Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
REVIEW

Nutritional management for enteric methane abatement: a review

K. A. Beauchemin A D , M. Kreuzer B , F. O’Mara C and T. A. McAllister A
+ Author Affiliations
- Author Affiliations

A Agriculture and Agri-Food Canada, PO Box 3000, Research Centre, Lethbridge, Alberta T1J 4B1, Canada.

B ETH Zurich, Institute of Animal Science, Universitaetstrasse 2, Zurich 8092, Switzerland.

C Teagasc, Head Office, Oak Park, Carlow, Co. Carlow, Ireland.

D Corresponding author. Email: beauchemink@agr.gc.ca

Australian Journal of Experimental Agriculture 48(2) 21-27 https://doi.org/10.1071/EA07199
Submitted: 7 July 2007  Accepted: 21 September 2007   Published: 2 January 2008

Abstract

A variety of nutritional management strategies that reduce enteric methane (CH4) production are discussed. Strategies such as increasing the level of grain in the diet, inclusion of lipids and supplementation with ionophores (>24 ppm) are most likely to be implemented by farmers because there is a high probability that they reduce CH4 emissions in addition to improving production efficiency. Improved pasture management, replacing grass silage with maize silage and using legumes hold some promise for CH4 mitigation but as yet their impact is not sufficiently documented. Several new strategies including dietary supplementation with saponins and tannins, selection of yeast cultures and use of fibre-digesting enzymes may mitigate CH4, but these still require extensive research. Most of the studies on reductions in CH4 from ruminants due to diet management are short-term and focussed only on changes in enteric emissions. Future research must examine long-term sustainability of reductions in CH4 production and impacts on the entire farm greenhouse gas budget.


Acknowledgements

We thank Chris Grainger for his assistance in summarising the data used to prepare Fig. 1.


References


Alcock D , Hegarty RS (2006) Effects of pasture improvement on productivity, gross margin and methane emissions of a grazing sheep enterprise. In ‘Greenhouse gases and animal agriculture: an update’. Elsevier International Congress Series 1293. (Eds CR Soliva, J Takahashi, M Kreuzer) pp. 103–105. (Elsevier: Amsterdam, The Netherlands)

Beauchemin KA, McGinn SM (2006) Methane emissions from beef cattle: effects of fumaric acid, essential oil, and canola oil. Journal of Animal Science 84, 1489–1496.
CAS | PubMed |
open url image1

Beauchemin KA, Colombatto D, Morgavi DP, Yang WZ (2003) Use of exogenous fibrolytic enzymes to improve feed utilization by ruminants. Journal of Animal Science 81(E. Suppl. 2), E37–E47. open url image1

Beauchemin KA, McGinn SM, Martinez TF, McAllister TA (2007a) Use of condensed tannin extract from quebracho trees to reduce methane emissions from cattle. Journal of Animal Science 85, 1900–1906.
CrossRef |
open url image1

Beauchemin KA, McGinn SM, Petit H (2007b) Methane abatement strategies for cattle: lipid supplementation of diets. Canadian Journal of Animal Science 87, 431–440.
CAS |
open url image1

Blaxter KL, Clapperton L (1965) Prediction of the amount of methane produced by ruminants. The British Journal of Nutrition 19, 511–522.
CrossRef | CAS | PubMed | open url image1

Boadi D, Benchaar C, Chiquette J, Masse D (2004) Mitigation strategies to reduce enteric methane emissions from dairy cows: update review. Canadian Journal of Animal Science 84, 319–335. open url image1

Carulla JE, Kreuzer M, Machmüller A, Hess HD (2005) Supplementation of Acacia mearnsii tannins decreases methanogenensis and urinary nitrogen in forage-fed sheep. Australian Journal of Agricultural Research 56, 961–970.
CrossRef | CAS | open url image1

Chaves AV, Thompson LC, Iwaasa AD, Scott SL, Olson ME , et al. (2006) Effect of pasture type (alfalfa vs. grass) on methane and carbon dioxide production by yearling beef heifer. Canadian Journal of Animal Science 86, 409–418.
CAS |
open url image1

Eun J-S, Beauchemin KA (2007) Assessment of the efficacy of varying experimental exogenous fibrolytic enzymes using in vitro fermentation characteristic. Animal Feed Science and Technology 132, 298–315.
CrossRef | CAS | open url image1

Grainger C, Clarke T, Beauchemin KA, McGinn SM, Eckard RJ (2008) Supplementation with whole cottonseed reduces methane emissions and increases milk production of dairy cows offered a forage and cereal grain diet. Australian Journal of Experimental Agriculture 48, 73–76.
CAS |
open url image1

Guan H, Wittenberg KM, Ominski KH, Krause DO (2006) Efficacy of ionophores in cattle diets for mitigation of enteric methane. Journal of Animal Science 84, 1896–1906.
CrossRef | CAS | PubMed | open url image1

Hayler R, Steingass H, Drochner W (1998) Effect of various feedstuffs rich in tannin content on rumen methanogenesis in vitro – using the Hohenheim gas test. Proceedings of the Society of Nutritional Physiology [Abstract] [In German] 7, 35. open url image1

Hess HD, Kreuzer M, Díaz TE, Lascano CE, Carulla JE , et al. (2003a) Saponin rich tropical fruits affect fermentation and methanogenesis in faunated and defaunated rumen fluid. Animal Feed Science and Technology 109, 79–94.
CrossRef | CAS | open url image1

Hess HD, Monsalve LM, Lascano CE, Carulla JE, Diaz TE , et al. (2003b) Supplementation of a tropical grass diet with forage legumes and Sapindus saponaria fruits: effects on in vitro ruminal nitrogen turnover and methanogenesis. Australian Journal of Agricultural Research 54, 703–713.
CrossRef | open url image1

Hess HD, Beuret R, Lötscher M, Hindrichsen IK, Machmüller A , et al. (2004) Ruminal fermentation, methanogenesis and nitrogen utilisation of sheep receiving tropical grass hay-concentrate diets offered with Sapindus saponaria fruits and Cratylia argentea foliage. Animal Science (Penicuik, Scotland) 79, 177–189. open url image1

Hindrichsen IK, Wettstein H-R, Machmüller A, Kreuzer M (2006) Methane emission, nutrient degradation and nitrogen turnover in dairy cows and their slurry at different milk production scenarios with and without concentrate supplementation. Agriculture Ecosystems & Environment 113, 150–161.
CrossRef | CAS | open url image1

Hu W, Liu J, Ye J, Wu Y, Guo Y (2005) Effect of tea saponin on rumen fermentation in vitro. Animal Feed Science and Technology 120, 333–339.
CrossRef | CAS | open url image1

IPCC (2006) ‘Guidelines for national greenhouse inventories. Agriculture, forestry and other land use. Emissions from livestock and manure management Vol. 4.’ pp. 10.1–10.87. (IPCC)

Johnson DE , Phetteplace HW , Seidl AF (2002 b) Methane, nitrous oxide and carbon dioxide emissions from ruminant livestock production systems. In ‘Greenhouse gases and animal agriculture’. (Eds J Takahashi, BA Young) pp. 77–85. (Elsevier: Amsterdam, The Netherlands)

Johnson KA, Johnson DE (1995) Methane emissions from cattle. Journal of Animal Science 73, 2483–2492.
CAS | PubMed |
open url image1

Johnson KA, Kincaid RL, Westberg HH, Gaskins CT, Lamb BK , et al. (2002a) The effect of oilseeds in diets of lactating cows on milk production and methane emissions. Journal of Dairy Science 85, 1509–1515.
CAS | PubMed |
open url image1

Jordan E, Lovett DK, Hawkins M, Callan JJ, O’Mara FP (2006a) The effect of varying levels of coconut oil on intake, digestibility and methane output from continental cross beef heifers. Animal Science (Penicuik, Scotland) 82, 859–865.
CrossRef | CAS | open url image1

Jordan E, Lovett DK, Monahan FJ, Callan J, Flynn B , et al. (2006b) Effect of refined coconut oil or copra meal on methane output and on intake and performance of beef heifers. Journal of Animal Science 84, 162–170.
CrossRef | CAS | PubMed | open url image1

Jordan E, Kenny D, Hawkins M, Malone R, Lovett DK , et al. (2006c) Effect of refined soy oil or whole soybeans on intake, methane output, and performance of young bulls. Journal of Animal Science 84, 2418–2425.
CrossRef | CAS | PubMed | open url image1

Lovett D, Lovell S, Stack L, Callan J, Finlay M , et al. (2003) Effect of forage/concentrate ratio and dietary coconut oil level on methane output and performance of finishing beef heifers. Livestock Production Science 84, 135–146.
CrossRef | open url image1

Lovett DK, Shalloo L, Dillon P, O’Mara FP (2006) A systems approach to quantify greenhouse gas fluxes from pastoral dairy production as affected by management regime. Agricultural Systems 88, 156–179.
CrossRef | open url image1

Machmüller A, Kreuzer M (1999) Methane suppression by coconut oil and associated effects on nutrient and energy balance in sheep. Canadian Journal Animal Science 79, 65–72. open url image1

Machmüller A, Ossowski DA, Kreuzer M (2000) Comparative evaluation of the effects of coconut oil, oilseeds and crystalline fat on methane release, digestion and energy balance in lambs. Animal Feed Science and Technology 85, 41–60.
CrossRef | open url image1

Machmüller A, Dohme F, Soliva CR, Wanner M, Kreuzer M (2001) Diet composition affects the level of ruminal methane suppression by medium-chain fatty acids. Australian Journal of Agricultural Research 52, 713–722.
CrossRef | open url image1

Machmüller A, Soliva CR, Kreuzer M (2003a) Effect of coconut oil and defaunation treatment on methanogenesis in sheep. Reproduction, Nutrition, Development 43, 41–55.
CrossRef | PubMed | open url image1

Machmüller A, Soliva CR, Kreuzer M (2003b) Methane-suppressing effect of myristic acid in sheep as affected by dietary calcium and forage proportion. The British Journal of Nutrition 90, 529–540.
CrossRef | PubMed | open url image1

McCaughey WP, Wittenberg K, Corrigan D (1999) Impact of pasture type on methane production by lactating beef cows. Canadian Journal Animal Science 79, 221–226. open url image1

McGinn SM, Beauchemin KA, Coates T, Colombatto D (2004) Methane emissions from beef cattle: effect of monensin, sunflower oil, enzymes, yeast and fumaric acid. Journal of Animal Science 82, 3346–3356.
CAS | PubMed |
open url image1

McGuffey RK, Richardson LF, Wilkinson JID (2001) Ionophores for dairy cattle: current status and future outlook. Journal of Dairy Science 84(E. Suppl.), E194–E203.
CAS |
open url image1

McMahon LR, Majak W, McAllister TA, Hall JW, Jones GA , et al. (1999) Effect of sainfoin on in vitro digestion of fresh alfalfa and bloat in steers. Canadian Journal Animal Science 79, 203–212. open url image1

Moe PW, Tyrrell HF (1979) Methane production in dairy cows. Journal of Dairy Science 62, 1583–1586.
CAS |
open url image1

Monteny GJ, Chadwick D (2006) Greenhouse gas abatement strategies for animal husbandry. Agriculture Ecosystems & Environment 112, 163–170.
CrossRef | CAS | open url image1

Newbold CJ , Rode LM (2006) Dietary additives to control methanogenesis in the rumen. In ‘Greenhouse gases and animal agriculture: an update’. Elsevier International Congress Series 1293. (Eds CR Soliva, J Takahashi, M Kreuzer) pp. 138–147. (Elsevier: Amsterdam, The Netherlands)

Odongo NE, Bagg R, Vessie G, Dick P, Or-Rashid MM , et al. (2007) Long-term effects of feeding monensin on methane production in lactating dairy cows. Journal of Dairy Science 90, 1781–1788.
CrossRef | CAS | PubMed | open url image1

O’Mara FP, Fitzgerald JJ, Murphy JJ, Rath M (1998) The effect on milk production of replacing grass silage with maize silage in the diet of dairy cows. Livestock Production Science 55, 79–87.
CrossRef | open url image1

Patra AK, Kamra DN, Agarwal N (2006) Effects of plant extracts on in vitro methanogenesis, enzyme activities and fermentation of feed in rumen liquor of buffalo. Animal Feed Science and Technology 128, 276–291.
CrossRef | CAS | open url image1

Pelchen A, Peters KJ (1998) Methane emissions from sheep. Small Ruminant Research 27, 137–150.
CrossRef | open url image1

Pen B, Sar C, Mwenya B, Kuwaki K, Morikawa R , et al. (2006) Effects of Yucca schidigera and Quillaja saponaria extracts on in vitro ruminal fermentation and methane emission. Animal Feed Science and Technology 129, 175–186.
CrossRef | open url image1

Pinares-Patiño CS, Ulyatt MJ, Waghorn GC, Lassey KR, Barry TN , et al. (2003) Methane emission by alpaca and sheep fed on lucerne hay or grazed on pastures of perennial ryegrass/white clover or birdsfoot trefoil. The Journal of Agricultural Science 140, 215–226.
CrossRef | open url image1

Robinson PH (2007) Yeast products for growing and lactating dairy cattle: impacts on rumen fermentation and performance. (Cooperative Extension: University of California, Davis) Available at http://animalscience.ucdavis.edu/faculty/robinson/Articles/fullText/pdf/Web200501.pdf [Verifed 3 November 2007]

Sauer FD, Fellner V, Kinsman R, Kramer JKG, Jackson HA , et al. (1998) Methane output and lactation response in Holstein cattle with monensin or unsaturated fat added to the diet. Journal of Animal Science 76, 906–914.
CAS | PubMed |
open url image1

Soliva CR, Zeleke AB, Clément C, Hess HD, Fievez V , et al. (2007) In vitro screening of various tropical foliages, seeds, fruits and medicinal plants for low methane and high ammonia generating potentials in the rumen. Animal Feed Science and Technology in press ,
CrossRef | open url image1

Tavendale MH, Meagher LP, Pacheco D, Walker N, Attwood GT , et al. (2005) Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Animal Feed Science and Technology 123–124, 403–419.
CrossRef | open url image1

Ulyatt MJ, Lassey KR, Shelton ID, Walker CF (2002) Methane emission from dairy cows and wether sheep fed subtropical grass-dominant pastures in midsummer in New Zealand. New Zealand Journal of Agricultural Research 45, 227–234.
CAS |
open url image1

Van Dorland HA, Wettstein HR, Leuenberger H, Kreuzer M (2007) Effect of supplementation of fresh and ensiled clovers to ryegrass on nitrogen loss and methane emissions in dairy cows. Livestock Science 111, 57–69.
CrossRef | open url image1

Van Vugt SJ, Waghorn GC, Clark DA, Woodward SL (2005) Impact of monensin on methane production and performance of cows fed forage diets. Proceedings of the New Zealand Society of Animal Production 65, 362–366. open url image1

Waghorn GC, Tavendale MH, Woodfield DR (2002) Methanogenesis from forages fed to sheep. Proceedings of the New Zealand Grassland Association 64, 159–165. open url image1

Waghorn GC, Clark H, Taufa V, Cavanagh A (2007) Monensin controlled release capsules for improved production and mitigating methane in dairy cows fed pasture. Proceedings of the New Zealand Society of Animal Production 67, 266–271. open url image1

Wallace RJ (2004) Antimicrobial properties of plant secondary metabolites. The Proceedings of the Nutrition Society 63, 621–629.
CrossRef | CAS | PubMed | open url image1

Woodward SL, Waghorn GC, Laboyre P (2004) Condensed tannins in birdsfoot trefoil (Lotus corniculatus) reduced methane emissions from dairy cow. Proceedings of the New Zealand Society of Animal Production 64, 160–164. open url image1

Woodward SL, Waghorn GC, Thomson NA (2006) Supplementing dairy cows with oils to improve performance and reduce methane – does it work? Proceedings of the New Zealand Society of Animal Production 66, 176–181. open url image1

Zeleke AB , Clément C , Hess HD , Kreuzer M , Soliva CR (2006) Effect of foliage from multi-purpose trees and a leguminous crop residue on in vitro methanogenesis and ruminal N use. In ‘Greenhouse gases and animal agriculture: an update’. Elsevier International Congress Series 1293. (Eds CR Soliva, J Takahashi, M Kreuzer) pp. 168–171. (Elsevier: Amsterdam, The Netherlands)








Rent Article (via Deepdyve) Export Citation Cited By (275)

View Altmetrics