Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Molecular Electronics: From Basic Chemical Principles to Photosynthesis to Steady-State Through-Molecule Conductivity to Computer Architectures

Jeffrey R. Reimers A C , Ante Bilić A , Zheng-Li Cai A , Mats Dahlbom A , Nicholas A. Lambropoulos A , Gemma C. Solomon A , Maxwell J. Crossley A and Noel S. Hush A B
+ Author Affiliations
- Author Affiliations

A School of Chemistry, University of Sydney, Sydney NSW 2006, Australia.

B School of Molecular and Microbial Biosciences, University of Sydney, Sydney NSW 2006, Australia.

C Corresponding author. Email: reimers@chem.usyd.edu.au

Australian Journal of Chemistry 57(12) 1133-1138 https://doi.org/10.1071/CH04132
Submitted: 11 May 2004  Accepted: 14 October 2004   Published: 8 December 2004

Abstract

Molecular electronics offers many possibilities for the development of electronic devices beyond the limit of silicon technology. Its basic ideas and history are reviewed, and a central aspect of the delocalization of electrons across molecules and junctions is examined. Analogies between key processes affecting steady-state through-molecule conduction and equilibrium geometric and spectroscopic properties of paradigm molecules, such as hydrogen, ammonia, benzene, and the Creutz–Taube ion are drawn, and the mechanisms by which control can be exerted over molecular-electronic processes during biological photosynthesis are examined. Ab initio molecular dynamics and simulations of conductivity are then presented for carbon nanotube flanged to gold(111), and device characteristics are calculated for a molecular shift register clocked by two gold electrodes.


Acknowledgments

We thank the Australian Research Council and Molecular Electronics Research for supporting this research and the Australian Partnership of Advanced Computing for the provision of much of the computer resources required.


References


[1]   R. F. Service, Science 2002, 295,  2398.
        | CrossRef |   open url image1

[2]   Molecular Electronics III (Eds J. R. Reimers, C. A. Picconatto, J. C. Ellenbogen, R. Shashidhar) 2003 (New York Academy of Science: New York, NY).

[3]   A. Nitzan, Annu. Rev. Phys. Chem. 2001, 52,  681.
        | CrossRef |   open url image1

[4]   R. M. Metzger, B. Chen, U. Hoepfner, M. V. Lakshmikantham, D. Vuillaume, T. Kawai, X. Wu, H. Tachibana, et al. J. Am. Chem. Soc. 1997, 119,  10455.
        | CrossRef |   open url image1

[5]   J. C. Ellenbogen, J. C. Love, Proc. IEEE 2000,  386.
        | CrossRef |   open url image1

[6]   Z. J. Donhauser, B. A. Mantooth, K. F. Kelly, L. A. Bumm, J. D. Monnell, J. J. Stapleton, D. W. Price, A. M. Rawlett, et al. Science 2001, 292,  2303.
        | CrossRef |   open url image1

[7]   M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, J. M. Tour, Science 1997, 278,  252.
        | CrossRef |   open url image1

[8]   N. S. Hush, Nature Mater. 2003, 2,  134.
        | CrossRef |   open url image1

[9]   E. Emberly, G. Kirczenow, J. Appl. Phys. 2000, 88,  5280.
        | CrossRef |   open url image1

[10]   A. M. Rawlett, T. J. Hopson, L. A. Nagahara, R. K. Tsui, G. K. Ramachandran, S. M. Lindsay, Appl. Phys. Lett. 2002, 81,  3043.
        | CrossRef |   open url image1

[11]   B. Xu, N. J. Tao, Science 2003, 301,  1221.
        | CrossRef |   open url image1

[12]   X. D. Cui, A. Primak, X. Zarate, J. Tomfohr, O. F. Sankey, A. L. Moore, T. A. Moore, D. Gust, et al. Science 2001, 294,  571.
        | CrossRef |   open url image1

[13]   N. S. Hush, Ann. N. Y. Acad. Sci. 2003, 1006,  1.
        | CrossRef |   open url image1

[14]   M. Kemp, A. Roitberg, V. Mujica, T. Wanta, M. A. Ratner, J. Phys. Chem. 1996, 100,  8349.
        | CrossRef |   open url image1

[15]   R. S. Mulliken, Life of a Scientist 1986 (Springer: New York, NY).

[16]   R. S. Mulliken, J. Chem. Phys. 1939, 7,  20.
         open url image1

[17]   R. S. Mulliken, Rec. Trav. Chim. 1956, 75,  845.
         open url image1

[18]   A. Szent-Gyorgi, Science 1941, 93,  609.
         open url image1

[19]   R. Pethig, Dielectric and Electronic Properties of Biological Materials 1979 (Wiley: Chichester).

[20]   D. D. Eley, Liq. Cryst. 1989, 171,  1.
         open url image1

[21]   A. Aviram, M. A. Ratner, Chem. Phys. Lett. 1974, 29,  277.
        | CrossRef |   open url image1

[22]   A. M. Kuznetsov, J. Ulstrup, Electron Transfer in Chemistry and Biology 1999 (Wiley: New York, NY).

[23]   N. S. Hush, J. Electroanal. Chem. 1999, 460,  5.
        | CrossRef |   open url image1

[24]   F. L. Carter, J. Vac. Sci. Technol. 1983, 1,  959.
        | CrossRef |   open url image1

[25]   F. L. Carter, R. E. Siatkowski, Molec. Struct. Energ. 1989, 11,  307.
         open url image1

[26]   G. Binnig, H. Rohrer, C. Gerber, E. Weibel, Appl. Phys. Lett. 1982, 40,  178.
        | CrossRef |   open url image1

[27]   G. Binnig, H. Rohrer, Sci. Am. 1985,  50.
         open url image1

[28]   G. C. Solomon, J. R. Reimers, N. S. Hush, J. Chem. Phys. 2004, 121,  6615.
        | CrossRef |   open url image1

[29]   R. Landauer, Philos. Mag. 1970, 21,  863.
         open url image1

[30]   S. Datta, Electronic Transport in Mesoscopic Systems 1997 (Cambridge University Press: Cambridge).

[31]   M. Kemp, A. Roitberg, V. Mujica, T. Wanta, M. A. Ratner, J. Phys. Chem. 1996, 100,  8349.
        | CrossRef |   open url image1

[32]   L. E. Hall, J. R. Reimers, N. S. Hush, K. Silverbrook, J. Chem. Phys. 2000, 112,  1510.
        | CrossRef |   open url image1

[33]   S. Larsson, J. Am. Chem. Soc. 1981, 103,  4034.
         open url image1

[34]   N. S. Hush, Chem. Phys. 1975, 10,  361.
        | CrossRef |   open url image1

[35]   C. A. Coulson, G. S. Rushbrooke, Proc. Camb. Phil. Soc. 1940, 36,  193.
         open url image1

[36]   Z.-L. Cai, J. R. Reimers, J. Phys. Chem. A 2000, 104,  8389.
        | CrossRef |   open url image1

[37]   G. Fischer, Z.-L. Cai, J. R. Reimers, P. Wormell, J. Phys. Chem. A 2003, 107,  3093.
        | CrossRef |   open url image1

[38]   N. S. Hush, Prog. Inorg. Chem. 1967, 8,  391.
         open url image1

[39]   N. S. Hush, Electrochim. Acta 1968, 13,  1005.
        | CrossRef |   open url image1

[40]   C. Creutz, H. Taube, J. Am. Chem. Soc. 1969, 91,  3988.
         open url image1

[41]   P. C. Ford, D. F. P. Rudd, R. Gaunder, H. Taube, J. Am. Chem. Soc. 1968, 90,  1187.
         open url image1

[42]   J. R. Reimers, N. S. Hush, Inorg. Chem. 1990, 29,  3686.
         open url image1

[43]   A. J. Hoff, J. Deisenhofer, Phys. Rep. 1997, 287,  1.
        | CrossRef |   open url image1

[44]   J. R. Reimers, N. S. Hush, J. Chem. Phys. 2003, 119,  3262.
        | CrossRef |   open url image1

[45]   J. R. Reimers, J. M. Hughes, N. S. Hush, Biochemistry 2000, 39,  16185.
        | CrossRef |   open url image1

[46]   J. R. Reimers, N. S. Hush, J. Am. Chem. Soc. 2004, 126,  4132.
        | CrossRef |   open url image1

[47]   J. R. Reimers, W. A. Shapley, N. S. Hush, J. Chem. Phys. 2003, 119,  3240.
        | CrossRef |   open url image1

[48]   J. Breton, E. Nabedryk, A. Clérici, Vibrational Spectrosc. 1999, 19,  71.
        | CrossRef |   open url image1

[49]   G. Hastings, V. M. Ramesh, R. Wang, V. Sivakumar, A. Webber, Biochemistry 2001, 40,  12943.
        | CrossRef |   open url image1

[50]   G. Hastings, private communication 2002.

[51]   J. Breton, E. Nabedryk, W. Leibl, Biochemistry 1999, 38,  11585.
        | CrossRef |   open url image1

[52]   J. Rautter, F. Lendzian, C. Schulz, A. Fetsch, M. Kuhn, X. Lin, J. C. Williams, J. P. Allen, W. Lubitz, Biochemistry 1995, 34,  8134.
         open url image1

[53]   K. Artz, J. C. Williams, J. P. Allen, F. Lendzian, J. Rautter, W. Lubitz, Proc. Natl. Acad. Sci. USA 1997, 94,  13582.
        | CrossRef |   open url image1

[54]   F. Müh, F. Lendzian, M. Roy, J. C. Williams, J. P. Allen, W. Lubitz, J. Phys. Chem. B 2002, 106,  3226.
        | CrossRef |   open url image1

[55]   B. Wang, X. Zheng, J. Michl, E. T. Foley, M. C. Hersam, A. Bilić, M. J. Crossley, J. R. Reimers, N. S. Hush, Nanotechnology 2004, 15,  324.
        | CrossRef |   open url image1

[56]   A. Bilić, J. R. Reimers, W. A. Hofer, N. S. Hush, Chem. Phys. Lett. 2004, 385,  341.
        | CrossRef |   open url image1

[57]   A. Bilić, J. R. Reimers, N. S. Hush, Surf. Rev. Lett. 2004, 11,  185.
        | CrossRef |   open url image1

[58]   A. Bilić, J. R. Reimers, N. S. Hush, J. Chem. Phys. 2003, 119,  1115.
        | CrossRef |   open url image1

[59]   A. Bilić, J. R. Reimers, N. S. Hush, J. Hafner, J. Chem. Phys. 2002, 116,  8981.
        | CrossRef |   open url image1

[60]   A. Bilić, J. R. Reimers, N. S. Hush, J. Phys. Chem. B 2002, 106,  6740.
        | CrossRef |   open url image1

[61]   N. A. Lambropoulos, J. R. Reimers, N. S. Hush, Nanotechnology 2004, 15,  1226.
        | CrossRef |   open url image1

[62]   M. J. Crossley, P. L. J. Burn, J. Chem. Soc. Chem. Commun. 1991,  1569.
        | CrossRef |   open url image1

[63]   M. J. Crossley, P. L. J. Burn, J. Chem. Soc. Chem. Commun. 1987,  39.
        | CrossRef |   open url image1

[64]   J. R. Reimers, L. E. Hall, M. J. Crossley, N. S. Hush, J. Phys. Chem. A 1999, 103,  4385.
        | CrossRef |   open url image1



Rent Article (via Deepdyve) Export Citation Cited By (10)