Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Conformational Boosting

Dimitris K. Agrafiotis A D , Alan Gibbs A , Fangqiang Zhu A , Sergei Izrailev A B and Eric Martin C
+ Author Affliations
- Author Affliations

A Johnson & Johnson Pharmaceutical Research & Development, 665 Stockton Drive, Exton, PA 19341, USA.

B Current address: Fortress Investment Group, 1345 Avenue of the Americas, New York, NY 10105, USA.

C Chiron Corporation, 4560 Horton Street, Emeryville, CA 94608, USA.

D Corresponding author. Email: dagrafio@prdus.jnj.com

Australian Journal of Chemistry 59(12) 874-878 https://doi.org/10.1071/CH06217
Submitted: 21 June 2006  Accepted: 21 October 2006   Published: 20 December 2006

Abstract

Stochastic proximity embedding (SPE) is a novel self-organizing algorithm for sampling conformational space using geometric constraints derived from the molecular connectivity table. Here, we describe a simple heuristic that can be used in conjunction with SPE to bias the conformational search towards more extended or compact conformations, and thus greatly expand the range of geometries sampled during the search. The method uses a boosting strategy to generate a series of conformations, each of which is at least as extended (or compact) as the previous one. The approach is compared to several popular conformational sampling techniques using a reference set of 59 bioactive ligands extracted from the Protein Data Bank, and is shown to be significantly more effective in sampling the full range of molecular radii, with the exception of the Catalyst program, which was equally effective.


Acknowledgments

We thank Dr David J. Diller of Pharmacopeia, Inc. for providing the dataset and Dr Huafeng Xu of D. E. Shaw & Co. for his earlier work on SPE and for his critical review of this manuscript.


References


[1]   A. R. Leach, in Reviews in Computational Chemistry (Eds K. B. Lipkowitz, D. B. Boyd) 1991, Vol. 2 (VCH: New York, NY).

[2]   D. J. Diller, K. M. Merz, J. Comput. Aid. Mol. Des. 2002, 16,  105.
         open url image1

[3]   J. Kirchmair, C. Laggner, G. Wolber, T. Langer, J. Chem. Inf. Model. 2005, 45,  422.
        | CrossRef |   open url image1

[4]   M. Lipton, W. C. Still, J. Comput. Chem. 1988, 9,  343.
        | CrossRef |   open url image1

[5]   R. E. Bruccoleri, M. Karplus, Biopolymers 1987, 26,  137.
        | CrossRef |   open url image1

[6]   R. E. Bruccoleri, M. Karplus, Macromolecules 1985, 18,  2767.
        | CrossRef |   open url image1

[7]   N. Go, H. A. Scheraga, Macromolecules 1970, 3,  178.
        | CrossRef |   open url image1

[8]   M. Saunders, J. Am. Chem. Soc. 1987, 109,  3150.
        | CrossRef |   open url image1

[9]   D. M. Ferguson, D. J. Raber, J. Am. Chem. Soc. 1989, 111,  4371.
        | CrossRef |   open url image1

[10]   G. Chang, W. C. Guida, W. C. Still, J. Am. Chem. Soc. 1989, 111,  4379.
        | CrossRef |   open url image1

[11]   P. Auffinger, G. Wipff, J. Comput. Chem. 1990, 11,  190.
        | CrossRef |   open url image1

[12]   R. E. Bruccoleri, M. Karplus, Biopolymers 1990, 29,  1847.
        | CrossRef |   open url image1

[13]   Z. Li, H. A. Scheraga, Proc. Natl. Acad. Sci. USA 1987, 84,  6611.
        | CrossRef |   open url image1

[14]   W. L. Jorgensen, J. Tirado-Rives, J. Phys. Chem. 1996, 100,  14508.
        | CrossRef |   open url image1

[15]   D. K. Agrafiotis, H. Xu, Proc. Natl. Acad. Sci. USA 2002, 99,  15869.
        | CrossRef |   open url image1

[16]   D. K. Agrafiotis, J. Comput. Chem. 2003, 24,  1215.
        | CrossRef |   open url image1

[17]   H. Xu, S. Izrailev, D. K. Agrafiotis, J. Chem. Inf. Comput. Sci. 2003, 43,  1186.
        | CrossRef |   open url image1

[18]   G. M. Crippen, J. Comput. Phys. 1978, 26,  449.
        | CrossRef |   open url image1

[19]   D. C. Spellmeyer, A. K. Wong, M. J. Bower, J. M. Blaney, J. Mol. Graphics Modell. 1997, 15,  18.
        | CrossRef |   open url image1

[20]   E. J. Martin, T. J. Hoeffel, J. Mol. Graphics Modell. 2000, 18,  383.
        | CrossRef |   open url image1

[21]   S. Izrailev, F. Zhu, D. K. Agrafiotis, J. Comput. Chem. 2006, 27,  1962.
         open url image1

[22]   H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, P. E. Bourne, Nucleic Acids Res. 2000, 28,  235.
        | CrossRef |   open url image1

[23]   H. M. Berman, T. N. Bhat, P. E. Bourne, Z. Feng, G. Gilliland, H. Weissig, J. Westbrook, Nat. Struct. Biol. 2000, 7,  957.
        | CrossRef |   open url image1

[24]   D. Weininger, Rubicon ver. 4.9 2005 (Daylight Chemical Information Systems: Irvine, CA).

[25]   G. M. Crippen, T. F. Havel, Acta Crystallogr. A 1978, 34,  282.
        | CrossRef |   open url image1

[26]   G. Chang, W. C. Guida, W. C. Still, J. Am. Chem. Soc. 1989, 111,  4379.
        | CrossRef |   open url image1

[27]   I. Kolossvary, W. C. Guida, J. Am. Chem. Soc. 1996, 118,  5011.
        | CrossRef |   open url image1

[28]   J. W. Ponder, F. M. Richards, J. Comput. Chem. 1987, 8,  1016.
        | CrossRef |   open url image1

[29]   D. M. Ferguson, D. J. Raber, J. Am. Chem. Soc. 1989, 111,  4371.
        | CrossRef |   open url image1

[30]   D. K. Agrafiotis, A. Gibbs, F. Zhu, S. Izrailev, E. Martin, unpublished.
         open url image1



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (517 KB) Export Citation Cited By (2)