Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Microwave-Assisted Grafting to MCM-41 Silica and its Application as Catalyst in Flow Chemistry

Manuela Oliverio A D , Antonio Procopio A , Toma N. Glasnov B , Walter Goessler C and C. Oliver Kappe B
+ Author Affiliations
- Author Affiliations

A Dipartimento Farmacobiologico,Università Magna Graecia Viale Europa, 88100-Germaneto (Cz), Italy.

B Christian Doppler Laboratory for Microwave Chemistry (CDLMC) and Institute of Chemistry, Karl-Franzens-University, Heinrichstrasse 28, A-8010 Graz, Austria.

C Institute for Chemistry – Analytical Chemistry, Karl-Franzens University, Universitaetsplatz 1-8010 Graz, Austria.

D Corresponding author. Email: m.oliverio@unicz.it

Australian Journal of Chemistry 64(11) 1522-1529 https://doi.org/10.1071/CH11125
Submitted: 31 March 2011  Accepted: 10 August 2011   Published: 16 November 2011

Abstract

Finding environmentally gentle methods to graft Lewis acid on the surface of mesoporous materials is a topic of current interest. Herein we describe the optimization of a preparation procedure of a mesoporous silica-supported ErIII catalyst using the microwave-assisted post-calcination functionalization of Mobil Composition of Matter-41 silica as the key step. The required time for functionalization was reduced from several hours to 10 min using sealed-vessel microwave technology. Control experiments using conventional heating at the same temperature demonstrated that the rate increase is owing to a simple thermal/kinetic effect as a result of the higher reaction temperature. The resulting ErIII catalyst was tested for the first time as a catalyst in the continuous flow deprotection of benzaldehyde dimethylacetal and a complete leaching study was performed.


References

[1]  (a) J. M. Thomas, R. Raja, D. W. Lewis, Angew. Chem. Int. Ed. 2005, 44, 6456.
         | CrossRef | 1:CAS:528:DC%2BD2MXhtFOqurrJ&md5=a25a25ebecf25378abd688af1d4fb701CAS | open url image1
      (b) A. Corma, H. Garcìa, Chem. Rev. 2003, 103, 4307.
         | CrossRef | open url image1
      (c) L. Soldi, W. Ferstl, S. Loebbecke, R. Maggi, C. Malmassarri, G. Sartori, S. Yada, J. Catal. 2008, 258, 289.
         | CrossRef | open url image1

[2]  (a) A. P. Wight, M. E. Davis, Chem. Rev. 2002, 102, 3589.
         | CrossRef | 1:CAS:528:DC%2BD38Xms1Wntr0%3D&md5=89aac0634e4b7659e5bed5241452bd85CAS | open url image1
      (b) G. J. de A.A. Soler-Illia, C. Sanchez, B. Lebeau, J. Patarin, Chem. Rev. 2002, 102, 4093.
         | CrossRef | open url image1
      (c) A. P. Bhatt, K. Pathak, R. V. Jasra, R. I. Kureshy, N. H. Khan, S. H. R. Abdi, J. Mol. Catal. A 2006, 244, 110.
         | CrossRef | open url image1
      (d) X.-J. Feng, X.-B. Lu, R. He, Appl. Catal. A Gen. 2004, 272, 347.
         | CrossRef | open url image1
      (e) M. Vicevic, K. V. K. Boodhoo, K. Scott, Chem. Eng. J. 2007, 133, 43.
         | CrossRef | open url image1

[3]  (a) S.-E. Park, E. A. Prasetyanto, Top. Catal. 2009, 52, 91.
         | CrossRef | 1:CAS:528:DC%2BD1MXhvVOhsrs%3D&md5=2ae1161dc3f6ac03e11ce9a9f58273baCAS | open url image1
      (b) M. C. A. Fantini, J. R. Matos, L. C. C. da Silva, L. P. Mercuri, G. O. Chiereci, E. B. Celer, M. Jaroniec, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 2004, 112, 106.
         | CrossRef | open url image1
      (c) B. L. Newalkar, H. Katsuki, S. Komarneni, Microporous Mesoporous Mater. 2004, 73, 161.
         | CrossRef | open url image1
      (d) E. A. Prasetyanto, S.-C. Lee, S.-M. Jeong, S.-E. Park, Chem Comm 2008, 1995. open url image1
      (e) P. Liu, Z. Su, Mater. Chem. Phys. 2005, 94, 412.
         | CrossRef | open url image1
      (f) T.-Z. Ren, Z.-Y. Yuan, B.-L. Su, Coll. Surf. A 2007, 88. open url image1
      (g) Sujandi, S.-C. Han, D.-S. Han, M.-J. Jin, S.-E. Park, J. Catal. 2006, 243, 410.
         | CrossRef | open url image1

[4]  (a) C. O. Kappe, D. Dallinger, Mol. Divers. 2009, 13, 71.
         | CrossRef | 1:CAS:528:DC%2BD1MXltV2hsbg%3D&md5=cad04f47e63fa1899d9cf8863be14e60CAS | open url image1
      (b) S. Caddick, R. Fitzmaurice, Tetrahedron 2009, 65, 3325.
         | CrossRef | open url image1

[5]  (a) G. E. Fryxell, Inorg. Chem. Commun. 2006, 9, 1141.
         | CrossRef | 1:CAS:528:DC%2BD28XhtFSgt7vI&md5=200c54dbc590653a3cb81508a2fe000cCAS | open url image1
      (b) S. Padmanabhan, J. E. Coughlin, R. P. Iyer, Tetrahedron Lett. 2005, 46, 343.
         | CrossRef | open url image1
      (c) K. M. Kacprzak, N. M. Maier, W. Lindner, Tetrahedron Lett. 2006, 47, 8721.
         | CrossRef | open url image1

[6]  (a) N. Garcia, E. Benito, J. Guzmàn, R. de Francisco, P. Tiemblo, Langmuir 2010, 26, 5499.
         | CrossRef | 1:CAS:528:DC%2BC3cXnt1SlsA%3D%3D&md5=4a9a3ffa37687fc2c6ce022d45d76963CAS | open url image1
      (b) N. Fukaya, H. Yamashita, H. Haga, T. Tsuchimoto, S. Onozawa, T. Sakakura, H. Yasuda, J. Organomet. Chem. 2011, 825. open url image1

[7]  A. Procopio, G. Das, M. Nardi, M. Oliverio, L. Pasqua, ChemSusChem 2008, 1, 916.
         | CrossRef | 1:CAS:528:DC%2BD1cXhsV2ls73J&md5=ddf41f6970953ec93ef021a4eb75a541CAS | open url image1

[8]  A. Procopio, M. Oliverio, R. Paonessa, M. Nardi, G. De Luca, Green Chem. 2009, 11, 770.
         | CrossRef | 1:CAS:528:DC%2BD1MXmvV2qt7s%3D&md5=1b2a65e842d9b5279e4efce6a4ecbd79CAS | open url image1

[9]  (a) J. H. Clark, A. J. Butterworth, S. J. Tavener, A. J. Teasdale, J. Chem. Technol. Biotechnol. 1997, 68, 367.
         | CrossRef | 1:CAS:528:DyaK2sXisFWksLg%3D&md5=74986d37e48db10f213dcaefe9d02b63CAS | open url image1
      (b) D. Brunel, Microporous Mesoporous Mater. 1999, 27, 329.
         | CrossRef | open url image1
      (c) S. Jaenicke, G. K. Chuah, X. H. Lin, X. C. Hu, Microporous Mesoporous Mater. 2000, 35–36, 143.
         | CrossRef | open url image1
      (d) L. R. Hilliard, X. Zhao, W. Tan, Anal. Chim. Acta 2002, 470, 51.
         | CrossRef | open url image1
      (e) L. H. N. Arakaki, J. G. P. Espínola, M. G. da Fonseca, S. F. de Oliveira, A. N. de Sousa, T. Arakaki, C. Airoldi, J. Colloid Interface Sci. 2004, 273, 211.
         | CrossRef | open url image1

[10]     (a) (a) For a survey of commercially available microwave reactors, see: C. O. Kappe, D. Dallinger, S. S. Murphree, in Practical Microwave Synthesis for Organic Chemists – Strategies, Instruments, and Protocols, 2009, ch. 3, pp. 45–85 (Wiley-VCH: Weinheim).
      (b) D. Obermayer, C. O. Kappe, Org. Biomol. Chem. 2010, 8, 114.
         | CrossRef | open url image1
      (c) D. Obermayer, B. Gutmann, C. O. Kappe, Angew. Chem. Int. Ed. 2009, 48, 8321.
         | CrossRef | open url image1

[11]  (a) M. A. Herrero, J. M. Kremsner, C. O. Kappe, J. Org. Chem. 2008, 73, 36.
         | CrossRef | 1:CAS:528:DC%2BD2sXhtl2itLjO&md5=5a3210c96a0095d4d521fac827988cf3CAS | open url image1
      (b) J. D. Moseley, P. Lenden, A. D. Thomson, J. P. Gilday, Tetrahedron Lett. 2007, 48, 6084.
         | CrossRef | open url image1
      (c) R. O. M. A. de Souza, O. A. C. Antunes, W. Kroutil, C. O. Kappe, J. Org. Chem. 2009, 74, 6157.
         | CrossRef | open url image1
      (d) M. Irfan, M. Fuchs, T. N. Glasnov, C. O. Kappe, Chemistry 2009, 15, 11608.
         | CrossRef | open url image1

[12]  M. Hosseini, N. Stiasni, V. Barbieri, C. O. Kappe, J. Org. Chem. 2007, 72, 1417.
         | CrossRef | 1:CAS:528:DC%2BD2sXnt1KltQ%3D%3D&md5=af14229d67846ef89c1933040e7f6408CAS | open url image1

[13]  (a) T. Razzaq, J. M. Kremsner, C. O. Kappe, J. Org. Chem. 2008, 73, 6321.
         | CrossRef | 1:CAS:528:DC%2BD1cXotlOmtrw%3D&md5=560402a2f6e6b42691397d074fa3e5d8CAS | open url image1
      (b) J. M. Kremsner, C. O. Kappe, J. Org. Chem. 2006, 71, 4651.
         | CrossRef | open url image1

[14]  For a detailed description, see: C. Csajági, B. Borcsek, K. Niesz, I. Kovács, Z. Székelyhidi, Z. Bajkó, L. Ürge, F. Darvas, Org. Lett. 2008, 10, 1589.
         | CrossRef | open url image1

[15]  R. Dalpozzo, A. De Nino, L. Maiuolo, M. Nardi, A. Procopio, A. Tagarelli, Synthesis 2004, 496.
         | 1:CAS:528:DC%2BD2cXisVanurY%3D&md5=e818d4c1131abb07230adfc5bc5ce2e4CAS | open url image1

[16]  (a) T. N. Glasnov, S. Findenig, C. O. Kappe, Chem. Eur. J. 2009, 15, 1001.
         | CrossRef | 1:CAS:528:DC%2BD1MXhsVKgtb0%3D&md5=a5ca28eba0fe18ea15e5cc6fa7e1ed89CAS | open url image1
      (b) M. Fuchs, W. Goessler, C. Pilger, C. O. Kappe, Adv. Synth. Catal. 2010, 352, 323.
         | CrossRef | open url image1

[17]  A. Procopio, M. Gaspari, M. Nardi, M. Oliverio, R. Romeo, Tetrahedron Lett. 2008, 49, 1961.
         | CrossRef | 1:CAS:528:DC%2BD1cXitlCjs7o%3D&md5=67f2e4a906771e145df3bc7e55a56562CAS | open url image1

[18]  A. Procopio, R. Dalpozzo, A. De Nino, L. Maiuolo, M. Nardi, B. Russo, Adv. Synth. Catal. 2005, 347, 1447.
         | CrossRef | 1:CAS:528:DC%2BD2MXpvFKrtLg%3D&md5=fe3ab4a41d6f3fd4c085946642c645a6CAS | open url image1

[19]  The Cube product series are available from Thales Nanotechnology Inc. (Budapest, Hungary). For further information, please refer to http://www.thalesnano.com (accessed 3 March 2011).



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (47 KB) Export Citation Cited By (8)