Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Borinic Acids: A Neglected Class of Organoboron Compounds for Recognition of Diols in Aqueous Solution

Michael G. Chudzinski A , Yuechuan Chi A and Mark S. Taylor A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6 Canada.

B Corresponding author. Email: mtaylor@chem.utoronto.ca

Australian Journal of Chemistry 64(11) 1466-1469 https://doi.org/10.1071/CH11294
Submitted: 16 July 2011  Accepted: 15 August 2011   Published: 16 November 2011

Abstract

Association constants between diphenylborinic acid and representative analytes capable of reversible two-point covalent binding (diols, catechols, and hydroxy acids) were determined using an indicator-displacement assay. Unlike boronic acids, which have been studied in great detail as receptors for diols and related compounds, borinic acids have effectively been ignored as candidates for such applications. The results of this study indicate that diphenylborinic acid displays high affinity for certain analytes of this type in aqueous solution. Of particular interest are differences between the selectivity of the borinic acid and that of a boronic acid of similar pKa towards the series of analytes studied: the borinic acid displays an unusually high level of discrimination for catechols over carbohydrates. The distinct selectivity observed, and the unique opportunities for steric and electronic tuning of diarylborinic acids, suggest that these compounds hold significant potential for applications in aqueous-phase molecular recognition.


References

[1]     (a) (a) For reviews, see: T. D. James, in Boronic Acids (Ed. D. G. Hall) 2005, pp. 441–479 (Wiley-VCH: Weinheim).
      (b) T. D. James, K. R. A. S. Sandanayake, S. Shinkai, Angew. Chem. Int. Ed. Engl. 1996, 35, 1910.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) T. D. James, S. Shinkai, Top. Curr. Chem. 2002, 218, 159.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) R. Nishiyabu, Y. Kubo, T. D. James, J. S. Fossey, Chem. Commun. 2011, 47, 1124.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVyjsw%3D%3D&md5=e711aadaf73414b84d2861d0d199e3a3CAS |
      (b) R. Nishiyabu, Y. Kubo, T. D. James, J. S. Fossey, Chem. Commun. 2011, 47, 1124.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) T. A. Houston, S. M. Levonis, M. J. Kiefel, Aust. J. Chem. 2007, 60, 811.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1yisLfO&md5=7873e0e603be7651231b8a2271ca6ef7CAS |
      (b) W. Wang, X. Gao, B. Wang, Curr. Org. Chem. 2002, 6, 1285.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  L. Zhu, Z. Zhong, E. V. Anslyn, J. Am. Chem. Soc. 2005, 127, 4260.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitVGis70%3D&md5=becc04abc54acd74eb733e9037a138b6CAS |

[5]  J. P. Lorand, J. O. Edwards, J. Org. Chem. 1959, 24, 769.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3cXksVenuw%3D%3D&md5=27d0ed09b6b209bda0f4762a83978eb9CAS |

[6]  G. Springsteen, B. Wang, Tetrahedron 2002, 58, 5291.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvVWktLs%3D&md5=a162e55b0a24206cd1a6a69a9fc37622CAS |

[7]  (a) J. Yan, G. Springsteen, S. Deeter, B. Wang, Tetrahedron 2004, 60, 11205.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpt1Wkt7c%3D&md5=a63fc926efadc4a2d4abf2700daf0573CAS |
      (b) H. R. Mulla, N. J. Agard, A. Basu, Bioorg. Med. Chem. Lett. 2004, 14, 25.
         | Crossref | GoogleScholarGoogle Scholar |

[8]     (a) While borinic acids and esters have not been exploited extensively in molecular recognition, they have been employed in such diverse applications as: (a) protease inhibitors: S. J. Steiner, J. T. Bien, B. D. Smith, Bioorg. Med. Chem. Lett. 1994, 4, 2417. 10.1016/S0960-894X(01)80401-7
      (b) bacterial methyltransferase inhibitors: S. J. Benkovic, S. J. Baker, M. R. K. Alley, Y.-H. Woo, Y.-K. Zhang, T. Akama, W. Mao, J. Baboval, P. T. R. Rajagopalan, M. Wall, L. S. Kahng, A. Tavossoli, L. Shapiro, J. Med. Chem. 2005, 48, 7468.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) inhibitors of -inositol(1,4,5)-trisphosphate-induced Ca release in cells: T. Maruyama, T. Kanaji, S. Nakade, T. Kanno, K. Mikoshiba, J. Biochem. 1997, 122, 498.

[9]  D. Lee, S. G. Newman, M. S. Taylor, Org. Lett. 2009, 11, 5486.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtl2qu7jP&md5=040596d7a201910d917f5e27d437c6aaCAS |

[10]  (a) D. Lee, M. S. Taylor, J. Am. Chem. Soc. 2011, 133, 3724.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFWluro%3D&md5=82e64ad6e121c6028179616a7ccfe223CAS |
      (b) L. Chan, M. S. Taylor, Org. Lett. 2011, 13, 3090.
         | Crossref | GoogleScholarGoogle Scholar |
         (c) (c) Gouliaras  C.Lee  D.Chan  L.Taylor  M. S.J. Am. Chem. Soc. 2011, 133, 13926. 10.1021/JA2062715

[11]  (a) G. T. Morin, M. P. Hughes, M.-F. Paugam, B. D. Smith, J. Am. Chem. Soc. 1994, 116, 8895.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlsFSntA%3D%3D&md5=04b304c7695f5cd58735a5dcde97ce34CAS |
      (b) M. J. Karpa, P. J. Duggan, G. J. Griffin, S. J. Freudigmann, Tetrahedron 1997, 53, 3669.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  G. Rao, M. J. Philipp, J. Org. Chem. 1991, 56, 1505.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXot1CmtA%3D%3D&md5=9b0295ad2ded6842d7f159183194a838CAS |

[13]  (a) For a review, see: B. T. Nguyen, E. V. Anslyn, Coord. Chem. Rev. 2006, 250, 3118.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKktbnK&md5=247160cea294b7ed794af1a3b775bbcaCAS |
      (b) For representative examples, including enantioselective variants of IDAs, see: Z. Zhong, E. V. Anslyn, J. Am. Chem. Soc. 2002, 124, 9014.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) B. T. Nguyen, S. L. Wiskur, E. V. Anslyn, Org. Lett. 2004, 6, 2499.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) D. Leung, J. F. Folmer-Andersen, V. M. Lynch, E. V. Anslyn, J. Am. Chem. Soc. 2008, 130, 12318.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) S. H. Shabbir, C. J. Regan, E. V. Anslyn, Proc. Natl. Acad. Sci. USA 2009, 106, 10487.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  The susceptibility of borinic acids to oxidation may be among the factors that has discouraged their application in molecular recognition. 1H-NMR studies indicated that decomposition of diphenylborinic acid in air-saturated D2O occurred slowly (<20 % over 44 h) while phenylboronic acid showed no signs of decomposition under the same conditions.

[15]  For example, similar association constants were determined for the 1a–glucose interaction using 1a itself or 1d as a precursor in the indicator-displacement assay.

[16]  L. Babcock, R. Pizer, Inorg. Chem. 1980, 19, 56.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXhtVSgsr4%3D&md5=73d7abdd5d310cfcebb23d34276803c1CAS |

[17]  Association constants for glucose, fructose, and catechol with 1c were in good agreement with those previously reported in ref. 7a under slightly different conditions.

[18]  DFT calculations were carried out with Gaussian ‘09 (Revision B.01: M. J. Frisch, et al.). See the Accessory Publication for details and the full reference to the Gaussian ‘09 software package.

[19]  J. C. Norrild, H. Eggert, J. Am. Chem. Soc. 1995, 117, 1479.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjtlKks7k%3D&md5=038865eaf7a3e568d3224298ded0da87CAS |

[20]  (a) For reviews, see: K. J. Albert, N. S. Lewis, C. L. Schauer, G. A. Sotzing, S. E. Stitzel, T. P. Vaid, D. R. Walt, Chem. Rev. 2000, 100, 2595.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkt1Grsrg%3D&md5=aa2238cf418a6a3dae0662e963fda595CAS |
      (b) A. T. Wright, E. V. Anslyn, Chem. Soc. Rev. 2006, 35, 14.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  (a) S. M. Strawbridge, S. J. Green, J. H. R. Tucker, Chem. Commun. 2000, 2393.,
         | Crossref | GoogleScholarGoogle Scholar |
      (b) K. E. Secor, T. E. Glass, Org. Lett. 2004, 6, 3727.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M.-F. Paugam, J. T. Bien, B. D. Smith, L. A. J. Chrisstoffels, F. de Jong, D. N. Reinhoudt, J. Am. Chem. Soc. 1996, 118, 9820.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  H. G. C. King, J. Food Sci. 1962, 27, 446.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXktFKqtA%3D%3D&md5=a89c4c4568687d10bd26198caa9b15ecCAS |

[23]  A. P. Umali, S. E. LeBoeuf, R. W. Newberry, S. Kim, L. Tran, W. A. Rome, T. Tian, D. Taing, J. Hong, M. Kwan, H. Heymann, E. V. Anslyn, Chem. Sci. 2011, 2, 439.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvV2isrk%3D&md5=00de402bdefd05e65d03586dba11d4d6CAS |

[24]  (a) T. Brasseur, L. Angenot, J. Chromatogr. A 1986, 351, 351.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XosVKmsA%3D%3D&md5=7943145ae350ec6406d9e28ba4289caeCAS |
      (b) T. Brasseur, J.-N. Wauters, L. Angenot, J. Chromatogr. A 1988, 437, 260.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L. N. Pietrzak, F. W. Collins, J. Cereal Sci. 1996, 23, 85.
         | Crossref | GoogleScholarGoogle Scholar |