Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Aggregation-Induced Emission and Large Two-Photon Absorption Cross-Sections of Diketopyrrolopyrrole (DPP) Derivatives

Bing Wang A , Nannan He A , Bo Li B , Shuangying Jiang C , Yi Qu A , Sanyin Qu A and Jianli Hua A D
+ Author Affiliations
- Author Affiliations

A Key Laboratory for Advanced Materials, Institute of Fine Chemicals and Department of Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.

B Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241, P. R. China.

C School of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China.

D Corresponding author. Email: jlhua@ecust.edu.cn

Australian Journal of Chemistry 65(4) 387-394 https://doi.org/10.1071/CH11410
Submitted: 22 October 2011  Accepted: 19 February 2012   Published: 27 March 2012

Abstract

In this work, a new series of triphenylamine-based diketo-pyrrolo-pyrrole (DPP) compounds (DPP-I, DPP-II, DPP-III) have been designed and synthesized by a concise route. Their one- and two-photon absorption properties have been investigated. It was found that DPP-based compounds are very weakly fluorescent in THF solution, but their intensities are increased by almost 29, 9, and 24 times in water/THF (v/v 90 %) mixtures, respectively, in which they exhibit a strongly enhanced red fluorescence. The result indicates that the intramolecular vibration and rotation of these dyes is considerably restricted in nano-aggregates formed in water/THF mixtures, which leads to significant increases in fluorescence. The two-photon absorption (2PA) cross-sections measured by the open aperture Z-scan technique were determined to be 188, 275 and 447 GM for DPP-I, DPP-II, and DPP-III, respectively; DPP-III with the symmetrical structure shows the highest value of 2PA cross-section. The excellent properties of aggregation-induced emission (AIE) and 2PA provide an attractive alternative for the biophotonic materials.


References

[1]  (a) B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry, Nature 1999, 398, 51.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvFaltLg%3D&md5=10b20933c94e25eb62171ecb0730b172CAS |
      (b) D. A. Parthenopoulos, P. M. Rentzepis, Science 1989, 245, 843.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) W. Denk, J. H. Strickler, W. W. Webb, Science 1990, 248, 73.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. Kawata, H. B. Sun, T. Tanaka, K. Takada, Nature 2001, 412, 697.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) H. M. Kim, B. H. Jeong, J. Y. Hyon, M. J. An, M. S. Seo, J. H. Hong, K. J. Lee, C. H. Kim, T. Joo, S. C. Hong, B. R. Cho, J. Am. Chem. Soc. 2008, 130, 4246.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) H. M. Kim, B. R. Cho, Acc. Chem. Res. 2009, 42, 863.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) W. H. Zhou, S. M. Kuebler, K. L. Braun, T. Y. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, S. R. Marder, Science 2002, 296, 1106.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) B. Strehmel, V. Strehmel, Advances in Photochemistry 2006, Volume 29, p. 111 (Eds D. C. Neckers, W. S. Jenks, T. Wolff) (John Wiley: Hoboken, NJ).(Eds D. C. Neckers, W. S. Jenks, T. Wolff) (John Wiley: Hoboken, NJ).
         | Crossref | GoogleScholarGoogle Scholar |
      (b) M. Rumi, S. Barlow, J. Wang, J. W. Perry, S. R. Marder, Adv. Polym. Sci. 2008, 213, 1.
      (c) G. S. He, L. S. Tan, Q. Zheng, P. N. Prasad, Chem. Rev. 2008, 108, 1245.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) F. Terenziani, C. Katan, E. Badaeva, S. Tretiak, M. Blanchard-Desce, Adv. Mater 2008, 20, 4641.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) H. M. Kim, B. R. Cho, Chem. Commun. 2009, 153.
      (f) M. Pawlicki, H. A. Collins, R. G. Denning, H. L. Anderson, Angew. Chem. Int. Edit. 2009, 48, 3244.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) Z. J. Liu, P. Shao, Z. L. Huang, B. Liu, T. Chen, J. G. Qin, Chem. Commun. 2008, 2260.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) Y. Qian, K. Meng, C. G. Lu, B. Lin, W. Huang, Y. P. Cui, Dyes Pigments 2009, 80, 174.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) C. C. Lin, M. Velusamy, H. H. Chou, J. T. Lin, P. T. Chou, Tetrahedron 2010, 66, 8629.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) Y. H. Jiang, Y. C. Wang, B. Wang, J. B. Yang, N. N. He, S. X. Qian, J. L. Hua, Chem. Asian J. 2011, 6, 157.
         | Crossref | GoogleScholarGoogle Scholar |
      (k) Y. H. Jiang, Y. C. Wang, J. B. Yang, J. L. Hua, B. Wang, S. X. Qian, H. Tian, J. Polym. Sci. A Polym. Chem. 2011, 49, 1830.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  G. S. He, J. Swiatkiewicz, Y. Jiang, P. N. Prasad, B. A. Reinhardt, L. S. Tan, R. Kannan, J. Phys. Chem. A 2000, 104, 4805.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXis1Gqsro%3D&md5=445f1040b03972e8b9681ae9d505564fCAS |

[4]  S. Kim, Q. D. Zheng, G. S. He, D. J. Bharali, H. E. Pudavar, A. Baev, P. N. Prasad, Adv. Funct. Mater. 2006, 16, 2317.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXivFakug%3D%3D&md5=ee9edc0a7cebaf79b805618f06bded1aCAS |

[5]  J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Tang, Chem. Commun. 2001, 34, 1740.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  (a) Y. Hong, J. W. Y. Lam, B. Z. Tang, Chem. Commun. 2009, 4332.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosV2nt78%3D&md5=f471720752cd3c35b01e4a14f9627a65CAS |
      (b) H. Tong, Y. Hong, Y. Dong, Y. Ren, M. Haeussler, J. W. Y. Lam, K. S. Wong, B. Z. Tang, J. Phys. Chem. B 2007, 111, 2000.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Z. Zhao, S. Chen, X. Shen, F. Mahtab, Y. Yu, P. Lu, J. W. Y. Lam, H. S. Kwok, B. Z. Tang, Chem. Commun. 2010, 46, 686.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) X. B. Du, Z. Y. Wang, Chem. Commun. 2011, 47, 4276.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) B. Xu, J. T. He, Y. J. Dong, F. P. Chen, W. L. Yu, W. J. Tian, Chem. Commun. 2011, 47, 6602.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  (a) Y. H. Jiang, Y. C. Wang, J. L. Hua, J. Tang, B. Li, S. X. Qian, H. Tian, Chem. Commun. 2010, 46, 4689.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnslSntLY%3D&md5=9ae52495c96b63f1542bc8bb4b60f7d0CAS |
      (b) B. Wang, Y. C. Wang, J. L. Hua, Y. H. Jiang, J. H. Huang, S. X. Qian, H. Tian, Chem.–Eur. J. 2011, 17, 2647.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  Y. Zhu, A. R. Rabindranath, T. Beyerlein, B. Tieke, Macromolecules 2007, 40, 6981.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpt12isLs%3D&md5=1d868fbf36afeafb48feb02af9b75934CAS |

[9]  E. Q. Guo, P. H. Ren, Y. L. Zhang, H. C. Zhang, W. J. Yang, Chem. Commun. 2009, 5859.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFynsb7P&md5=c6107ba103d7dc705a3c172734f99aa6CAS |

[10]  (a) G. S. He, L. S. Tan, Q. Zheng, P. N. Prasad, Chem. Rev. 2008, 108, 1245.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjslSntr4%3D&md5=196a1a3be8eee5ca5e55c4c976daa8adCAS |
      (b) M. Pawlicki, H. A. Collins, R. G. Denning, H. L. Anderson, Angew. Chem. Int. Edit. 2009, 48, 3244.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  S. Y. Qu, W. J. Wu, J. L. Hua, H. Tian, J. Phys. Chem. C 2010, 114, 1343.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOisr7O&md5=73804d0a8943c4a2a0840e10d1321375CAS |

[12]  (a) Y. Q. Dong, J. W. Y. Lam, A. Qin, Z. Li, J. Sun, H. H. Y. Sung, I. D. Williams, B. Z. Tang, Chem. Commun. 2007, 239.
      (b) Z. Li, Y. Q. Dong, Y. H. Tang, M. Haubler, H. Tong, Y. Dong, J. W. Y. Lam, K. S. Wong, P. Gao, I. D. Williams, H. S. Kwok, B. Z. Tang, J. Phys. Chem. B 2005, 109, 10061.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Y. Q. Dong, J. W. Y. Lam, Z. Li, A. Qin, H. Tong, Y. Dong, X. Feng, B. Z. Tang, J. Inorg. Organomet. P. 2005, 15, 287.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Y. Q. Dong, J. W. Y. Lam, A. Qin, J. X. Sun, J. Z. Liu, Z. Li, J. Z. Sun, H. Y. Sung, D. Williams, H. S. Kwok, B. Z. Tang, Chem. Commun. 2007, 3255.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  Y. Liu, X. T. Tao, F. Wang, J. Shi, J. Sun, W. Yu, Y. Ren, D. Zou, M. H. Jiang, J. Phys. Chem. C 2007, 111, 6544.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvFyisbw%3D&md5=0e37b7d27e81fcf69b29b5125314bb71CAS |

[14]  X. Feng, B. Tong, J. B. Shen, J. B. Shi, T. Y. Han, L. Chen, J. G. Zhi, P. Lu, Y. G. Ma, Y. P. Dong, J. Phys. Chem. B 2010, 114, 16731.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVyitbrP&md5=c90a8e2dfe5a9f6a606cab820a466935CAS |

[15]  Y. H. Jiang, Y. C. Wang, J. L. Hua, S. Y. Qu, S. Q. Qian, H. Tian, J. Polym. Sci. Pol. Chem. 2009, 47, 4400.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1CltLk%3D&md5=dda9bf2ee49eb1ea791c2dc5f3e21f23CAS |

[16]  R. C. Bong, H. S. Kyung, H. L. Sang, S. S. Young, K. L. Yun, J. J. Seung, H. C. Jun, L. Hochan, C. Minhaeng, J. Am. Chem. Soc. 2001, 123, 10039.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  A. Bhaskar, G. Ramakrishna, Z. Lu, R. Twieg, J. M. Hales, D. J. Hagan, E. V. Stryland, III, A. Bhaskar, G. Ramakrishna, Z. Lu, R. Twieg, J. M. Hales, D. J. Hagan, E. V. Stryland, III, J. Am. Chem. Soc. 2006, 128, 11840.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVChsrc%3D&md5=2577eb8940dee5847357640d1f699a8dCAS |