Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Influence of Additives on the Speciation, Morphology, and Nanocrystallinity of Aluminium Electrodeposition

Lian Liu A B , Xingmei Lu A , Yingjun Cai A , Yong Zheng A B and Suojiang Zhang A C
+ Author Affiliations
- Author Affiliations

A Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.

B College of Chemistry and Chemical Engineering, Graduate University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

C Corresponding author. Email: sjzhang@home.ipe.ac.cn

Australian Journal of Chemistry 65(11) 1523-1528 https://doi.org/10.1071/CH12305
Submitted: 28 June 2012  Accepted: 27 July 2012   Published: 18 September 2012

Abstract

The effects of various additives, including alkali metal chlorides, rare earth chlorides, small organic molecules, and surfactants on the electrodeposition of aluminium were investigated. The analytical techniques of cyclic voltammetry, potentiostatic coulometry, scanning electron microscope, and X-ray diffraction were applied to determine the speciation, morphology, and nanocrystallinity. It was found that additives significantly influence the morphology and grain parameters of the aluminium deposits. Inorganic additives and macromolecular surfactants play a prominent role in altering the speciation of aluminium. Small organic molecules (including surfactants) with simple structures have almost no effect on the aluminium separation process, but have a role in densification and homogenisation. In addition, the grain size can be adjusted after adding various additives, and then nanocrystallinity can be achieved. In conclusion, the effect of additive on the aluminium deposit can be predicted by cyclic voltammetry, which is a clue for smart-design on technological conditions of aluminium electrodeposition.


References

[1]  J. K. Chang, S. Y. Chen, W. T. Tsai, M. J. Deng, I. W. Sun, Electrochem. Commun. 2007, 9, 1602.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsFCmu7w%3D&md5=8874ced20cc95ddc07ee60d8c8f0a447CAS |

[2]  D. R. MacFarlane, K. R. Seddon, Aust. J. Chem. 2007, 60, 3.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVeis7o%3D&md5=d732ae5f01a6d53f01caa862d5450427CAS |

[3]  M. Galiński, A. Lewandowski, I. Stępniak, Electrochim. Acta 2006, 51, 5567.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  F. Endres, O. Höfft, N. Borisenko, L. H. Gasparotto, Phys. Chem. Chem. Phys. 2010, 12, 1724.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsleltbg%3D&md5=9516c0a5d38973f563c88fcf9fd7b1b2CAS |

[5]  F. Endres, ChemPhysChem 2002, 3, 144.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVels74%3D&md5=4ee3e0b3b32c05ab46744a9f6087849fCAS |

[6]  A. P. Abbott, K. J. McKenzie, Phys. Chem. Chem. Phys. 2006, 8, 4265.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpslamsb4%3D&md5=8259db65d796f83ba3680b52e2c8124cCAS |

[7]  G. K. Yue, S. J. Zhang, Y. L. Zhu, X. M. Lu, S. C. Li, Z. X. Li, AIChE J. 2009, 55, 783.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXislWiurw%3D&md5=6663e1d854845a1ac7cb6f3699114089CAS |

[8]  A. P. Abbott, C. A. Eardley, N. R. S. Farley, G. A. Griffith, A. Pratt, J. Appl. Electrochem. 2001, 31, 1345.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xhtl2ru7k%3D&md5=c8366b8c8a569d3fff46ac8839953392CAS |

[9]  F. Endres, S. Z. Abedin, Phys. Chem. Chem. Phys. 2006, 8, 2101.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsVOmsL0%3D&md5=5476e80c7ccfb615113757a354a00563CAS |

[10]  J. Robinson, R. A. Osteryoung, J. Am. Chem. Soc. 1980, 102, 4415.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXksFKrsbg%3D&md5=790db67b93d58c19554afa0f97e6165cCAS |

[11]  J. Robinson, R. A. Osteryoung, J. Electrochem. Soc. 1980, 127, 122.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXosVOksQ%3D%3D&md5=3917b70bda960c0b59e241cb6d41c277CAS |

[12]  D. Pradhan, D. Mantha, R. G. Reddy, Electrochim. Acta 2009, 54, 6661.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGru7jM&md5=cad220c7f1975766dfbf8c376dea1b62CAS |

[13]  D. Pradhan, R. G. Reddy, Metall. Mater. Trans. B 2012, 43, 519.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvVyrsL4%3D&md5=47190319634012cd2474ccb9e1c186abCAS |

[14]  S. Varvara, L. Muresan, A. Nicoara, G. Maurin, I. C. Popescu, Mater. Chem. Phys. 2001, 72, 332.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXns1WqsLw%3D&md5=0cd0cf126db1d9b2d13c2b7ba3a3aa42CAS |

[15]  È. Favry, N. Frederich, A. Meunier, L. Omnès, F. Jomard, A. Etcheberry, Electrochim. Acta 2008, 53, 7004.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXos12mtLs%3D&md5=e93caa9d348d1edca38728704f6270c7CAS |

[16]  M. A. Pasquale, L. M. Gassa, A. J. Arvia, Electrochim. Acta 2008, 53, 5891.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsFaitb0%3D&md5=0bc0902fefa9d3619f859aebc41c6fb5CAS |

[17]  O. I. González-Peña, T. W. Chapman, Y. M. Vong, R. Antaño-López, Electrochim. Acta 2008, 53, 5549.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  Q. Liao, W. R. Pitner, G. Stewart, C. L. Hussey, J. Electrochem. Soc. 1997, 144, 936.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXisVKjtbw%3D&md5=ca09ffa8ee3b197577750eda58393553CAS |

[19]  W. H. Safranek, W. C. Schickner, C. L. Fraust, J. Electrochem. Soc. 1952, 99, 53.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3sXlvVShsA%3D%3D&md5=816d8247b197fe68c30fa3168da3f93aCAS |

[20]  E. Peled, E. Gileadi, J. Electrochem. Soc. 1976, 123, 15.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28Xms1Oqug%3D%3D&md5=cf7a4d99b79684d3b6403e3cefbfc913CAS |

[21]  W. R. Pitner, C. L. Hussey, G. R. Stafford, J. Electrochem. Soc. 1996, 143, 130.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XksVygsg%3D%3D&md5=c523599f7e82939aa742c9833d1b7078CAS |

[22]  S. Takahashi, K. Akimoto, I. Saeki, Hyomen Gijutsu 1989, 40, 134.
         | 1:CAS:528:DyaL1MXitl2itbw%3D&md5=ef0577079b680357af14fa8bbeda2f10CAS |

[23]  F. Endres, M. Bukowski, R. Hempelmann, H. Natter, Angew. Chem. Int. Ed. 2003, 42, 3428.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtlyqtLs%3D&md5=c0b1865024f2fa2b42d547702c8d41b0CAS |

[24]  A. P. Abbott, F. Qin, H. M. A. Abood, M. R. Ali, K. S. Ryder, Phys. Chem. Chem. Phys. 2010, 12, 1862.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslemu70%3D&md5=226b92c1d0435fa6ddc3651c20718510CAS |

[25]  A. P. Abbott, G. Gapper, D. L. Davies, R. K. Rasheed, Chem. – Eur. J. 2004, 10, 3769.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFeisr8%3D&md5=5934b68cc5d5fe4ffcc6f10614fae7aaCAS |

[26]  M. C. Buzzeo, O. V. Klymenko, J. D. Wadhawan, C. Hardacre, K. R. Seddon, R. G. Compton, J. Phys. Chem. A 2003, 107, 8872.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsFegtLg%3D&md5=75fa6e30c9283eb166f30c404a8313d8CAS |

[27]  S. Ernst, L. Aldous, R. G. Compton, Chem. Phys. Lett. 2011, 511, 461.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFGht7w%3D&md5=58dfbd01c9f0c43c51131f98626aa3e8CAS |

[28]  P. Scherrer, Göttinger Nachrichten 1918, 2, 98.

[29]  J. G. Huddleston, A. E. Visser, W. M. Reichert, H. D. Willauer, G. A. Broker, R. D. Rogers, Green Chem. 2001, 3, 156.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtVWhsr8%3D&md5=c92604dc3c24da803248d6c3c1cf5392CAS |