*">
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

The Hydrogen-Bonding Interactions between 1-Ethyl-3-Methylimidazolium Lactate Ionic Liquid and Methanol*

Hongyan He A B , Hui Chen A , Yanzhen Zheng C , Xiaochun Zhang A , Xiaoqian Yao A , Zhiwu Yu C and Suojiang Zhang A D

A Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.

B College of Chemistry and Chemical Engineering, Graduate University of Chinese Academy of Sciences, Beijing 100049, China.

C Department of Chemistry, Tsinghua University, Beijing 100084, China.

D Corresponding author. Email: sjzhang@home.ipe.ac.cn

Australian Journal of Chemistry 66(1) 50-59 http://dx.doi.org/10.1071/CH12308
Submitted: 29 June 2012  Accepted: 1 November 2012   Published: 19 December 2012

Abstract

1-Ethyl-3-Methylimidazolium lactate ([EMIM][LAC]) is an environmental friendly ionic liquid with potential industrial applications. Attenuated total reflectance infrared spectroscopy (ATR-IR) and density functional theory (DFT) calculations were employed to investigate the molecular interactions between methanol and [EMIM][LAC]. The infrared spectra were analyzed by two methods: excess spectroscopy and two-dimensional (2D) correlation spectroscopy. In the ATR-FTIR spectra, v(C4,5–H), v(C2–H), v(alkyl), v(–OD), and v(–COO) all show blue shifts upon addition of methanol. 2D correlation analysis indicated that the v(imidazolium ring C–H) band varies before that of v(alkyl C–H) with increasing CD3OD content. The following sequential order of interaction strength is established by DFT calculations: EMIM–methanol –LAC > EMIM–LAC > LAC–methanol > EMIM–methanol.

Graphical Abstract Image


References

[1]  S. A. Forsyth, J. M. Pringle, D. R. MacFarlane, Aust. J. Chem. 2004, 57, 113.
         | CrossRef | 1:CAS:528:DC%2BD2cXovVCgtw%3D%3D&md5=7927ba038384984ae2d1e749a5e199e4CAS | open url image1

[2]  J. S. Wilkes, Green Chem. 2002, 4, 73.
         | CrossRef | 1:CAS:528:DC%2BD2cXksVCgsb4%3D&md5=d32fb81384dbba3ec94a44226b3880ceCAS | open url image1

[3]  A. Navas, J. Ortega, R. Vreekamp, E. Marrero, J. Palomar, Ind. Eng. Chem. Res. 2009, 48, 2678.
         | CrossRef | 1:CAS:528:DC%2BD1MXhtFOkurY%3D&md5=7e1df3b87c88c6c19ac1cf467d0d6fa2CAS | open url image1

[4]  C. Cappelli, B. Mennucci, C. O. da Silva, J. Tomasi, J. Chem. Phys. 2000, 112, 5382.
         | CrossRef | 1:CAS:528:DC%2BD3cXhs1eqsr4%3D&md5=69c0871c0782f43521399222ef4a7536CAS | open url image1

[5]  H. C. Chang, J. C. Jiang, Y. C. Liou, C. H. Hung, T. Y. Lai, S. H. Lin, J. Chem. Phys. 2008, 129, 044506.
         | CrossRef | open url image1

[6]  Y. Umebayashi, J. C. Jiang, K. H. Lin, Y. L. Shan, K. Fujii, S. Seki, S. I. Ishiguro, S. H. Lin, H. C. Chang, J. Chem. Phys. 2009, 131, 234502.
         | CrossRef | open url image1

[7]  R. Vreekamp, D. Castellano, J. Palomar, J. Ortega, F. Espiau, L. Fernandez, E. Penco, J. Phys. Chem. B 2011, 115, 8763.
         | CrossRef | 1:CAS:528:DC%2BC3MXnvValsrk%3D&md5=efce1d07ae3ef4d6a209cb19c1a5496cCAS | open url image1

[8]  Q. G. Zhang, N. N. Wang, S. L. Wang, Z. W. Yu, J. Phys. Chem. B 2011, 115, 11127.
         | CrossRef | 1:CAS:528:DC%2BC3MXhtFSmt7nM&md5=a77d5d7777f03fd4ace57a9d7c8d8b0dCAS | open url image1

[9]  H. C. Chang, J. C. Jiang, W. C. Tsai, G. C. Chen, S. H. Lin, J. Phys. Chem. B 2006, 110, 3302.
         | CrossRef | 1:CAS:528:DC%2BD28XptFSitA%3D%3D&md5=4685390229afb72dd0a6815a17df8f8bCAS | open url image1

[10]  W. Li, C. Qi, X. Wu, H. Rong, L. Gong, J. Mol. Struct. Theochem. 2008, 855, 34.
         | CrossRef | 1:CAS:528:DC%2BD1cXktlWrsLw%3D&md5=aa8f5f800ecb9367053ab1df268728a6CAS | open url image1

[11]  X. Zhu, H. Sun, D. Zhang, C. Liu, J. Mol. Model. 2011, 17, 1997.
         | CrossRef | 1:CAS:528:DC%2BC3MXpsFejtbk%3D&md5=62288e73dc8ea1666ec932f16d8a3dc9CAS | open url image1

[12]  B. Kumar, T. Singh, K. S. Rao, A. Pal, A. Kumar, J. Chem. Thermodyn. 2012, 44, 121.
         | CrossRef | 1:CAS:528:DC%2BC3MXht1OqsLbL&md5=e0a8f6497765c0ef104f3fae4d83efdfCAS | open url image1

[13]  J. M. Crosthwaite, M. J. Muldoon, S. Aki, E. J. Maginn, J. F. Brennecke, J. Phys. Chem. B 2006, 110, 9354.
         | CrossRef | 1:CAS:528:DC%2BD28XjsFWqtrk%3D&md5=50be2f995ad8f10af0ac5f5c1cfc2ba3CAS | open url image1

[14]  A. Elaiwi, P. B. Hitchcock, K. R. Seddon, N. Srinivasan, Y. M. Tan, T. Welton, J. A. Zora, J. Chem. Soc., Dalton Trans. 1995, 21, 3467.
         | CrossRef | open url image1

[15]  K. Dong, S. J. Zhang, D. X. Wang, X. Q. Yao, J. Phys. Chem. A 2006, 110, 9775.
         | CrossRef | 1:CAS:528:DC%2BD28XmslGku78%3D&md5=f6a169e4cbb33bb4fc5f727982a8da8dCAS | open url image1

[16]  K. Dong, S. J. Zhang, Chemistry 2012, 18, 2748.
         | CrossRef | 1:CAS:528:DC%2BC38Xit1ehsro%3D&md5=15396f6617fd5b9af18804dad612bda1CAS | open url image1

[17]  T. Peppel, C. Roth, K. Fumino, D. Paschek, M. Köckerling, R. Ludwig, Angew. Chem. Int. Ed. 2011, 50, 6661.
         | CrossRef | 1:CAS:528:DC%2BC3MXmvFahsrw%3D&md5=358d7b9c506db588650d552ef36fcaabCAS | open url image1

[18]  H. C. Chang, J. C. Jiang, C. Y. Chang, J. C. Su, C. H. Hung, Y. C. Liou, S. H. Lin, J. Phys. Chem. B 2008, 112, 4351.
         | CrossRef | 1:CAS:528:DC%2BD1cXjtlOjtL0%3D&md5=cd8feab040602e1b01d32cdfa88b1cedCAS | open url image1

[19]  H. C. Chang, J. C. Jiang, Y. C. Liou, C. H. Hung, T. Y. Lai, S. H. Lin, Anal. Sci. 2008, 24, 1305.
         | CrossRef | 1:CAS:528:DC%2BD1cXht1OlsrrI&md5=50b2dc5be4d11d5112fc7a4821cf3c94CAS | open url image1

[20]  Q. G. Zhang, N. N. Wang, Z. W. Yu, J. Phys. Chem. B 2010, 114, 4747.
         | CrossRef | 1:CAS:528:DC%2BC3cXjvVKgs7o%3D&md5=f379e0ddac2999c3ea59e07e3b5f50f0CAS | open url image1

[21]  N. N. Wang, Q. G. Zhang, F. G. Wu, Q. Z. Li, Z. W. Yu, J. Phys. Chem. B 2010, 114, 8689.
         | CrossRef | 1:CAS:528:DC%2BC3cXnsFGgsrk%3D&md5=db29fab7c5b882e1cbe53394a42a4858CAS | open url image1

[22]  F. Shi, H. Xiong, Y. L. Gu, S. Guo, Y. Q. Deng, Chem. Commun. 2003, 9, 1054.
         | CrossRef | open url image1

[23]  A. L. Miller, N. B. Bowden, Chem. Commun. 2007, 20, 2051.
         | CrossRef | open url image1

[24]  J. D. Scholten, J. Dupont, Organometallics 2008, 27, 4439.
         | CrossRef | 1:CAS:528:DC%2BD1cXpt1ygsLY%3D&md5=dd2fb536815b269ebfc8553e4bbaf4b1CAS | open url image1

[25]  P. H. Stahl, C. G. Wermuth, Pharmaceutical Salts: Properties, Selection, and Use 2002 (Wiley-VCH: Weinheim).

[26]  J. Pernak, I. Goc, Pol. J. Chem. 2003, 77, 975.
         | 1:CAS:528:DC%2BD3sXmtlyhtb8%3D&md5=c27615ed37f80ec5799cad8ce61d8b96CAS | open url image1

[27]  T. Hardarson, J. Q. Skarphedinsson, T. Sveinsson, J. Appl. Physiol. 1998, 84, 411.
         | CrossRef | 1:CAS:528:DyaK1cXhtFSrt7g%3D&md5=c513beb3c2ee111680e8bdfe52083bbdCAS | open url image1

[28]  M. Petkovic, J. Ferguson, A. Bohn, J. Trindade, I. Martins, M. B. Carvalho, M. C. Leitão, C. Rodrigues, H. Garcia, R. Ferreira, K. R. Seddon, L. P. N. Rebelo, C. Silva Pereira, Green Chem. 2009, 11, 889.
         | CrossRef | 1:CAS:528:DC%2BD1MXmvV2qtL0%3D&md5=69381af7682b46672aa0511e13cee0bbCAS | open url image1

[29]  J. Pernak, I. Goc, I. Mirska, Green Chem. 2004, 6, 323.
         | CrossRef | 1:CAS:528:DC%2BD2cXmtVWgtrc%3D&md5=e6d35efcfb566f22beca77db16a7ada7CAS | open url image1

[30]  J. Y. Wang, H. C. Jiang, Y. M. Liu, Y. Q. Hu, J. Chem. Thermodyn. 2011, 43, 800.
         | CrossRef | 1:CAS:528:DC%2BC3MXitFahtb8%3D&md5=008fc761def287fc03137cf725f16256CAS | open url image1

[31]  S. Aparicio, R. Alcalde, M. Atilhan, J. Phys. Chem. B 2010, 114, 5795.
         | CrossRef | 1:CAS:528:DC%2BC3cXksFeqtrs%3D&md5=1b92283005c6bd9eab6da75cab39ac0aCAS | open url image1

[32]  H.-J. Tong, J.-Y. Yu, Y.-H. Zhang, J. P. Reid, J. Phys. Chem. A 2010, 114, 6795.
         | CrossRef | 1:CAS:528:DC%2BC3cXmvVSksrg%3D&md5=c9c15d7ac4b108375632af211f3bcd4bCAS | open url image1

[33]  A. Watanabe, S. Morita, Y. Ozaki, Appl. Spectrosc. 2006, 60, 1054.
         | CrossRef | 1:CAS:528:DC%2BD28XpvVGju7c%3D&md5=f737e1d87465b24d9dfe605c675cb74dCAS | open url image1

[34]  S. W. Li, X. L. Yu, G. J. Zhang, Y. Ma, J. N. Yao, B. Keita, N. Louis, H. Zhao, J. Mater. Chem. 2011, 21, 2282.
         | CrossRef | 1:CAS:528:DC%2BC3MXhtlOju78%3D&md5=d27b0ec8f3e8ff08e3923abb1082315dCAS | open url image1

[35]  R. J. Liu, S. W. Li, X. L. Yu, G. J. Zhang, Y. Ma, J. N. Yao, J. Mater. Chem. 2011, 21, 14917.
         | CrossRef | 1:CAS:528:DC%2BC3MXhtF2htbzO&md5=dc471947e89f76559f89824859808ad2CAS | open url image1

[36]  S. Li, X. Yu, G. Zhang, Y. Ma, J. Yao, P. de Oliveira, Carbon 2011, 49, 1906.
         | CrossRef | 1:CAS:528:DC%2BC3MXisFWqtr0%3D&md5=01868b5ddd85b455e11b0f3160fc3297CAS | open url image1

[37]  N. N. Wang, Q. Z. Li, Z. W. Yu, Appl. Spectrosc. 2009, 63, 1356.
         | CrossRef | 1:CAS:528:DC%2BD1MXhsF2gsLjE&md5=7e2811f90d5453b04b6f625f7b6a84c9CAS | open url image1

[38]  Q. Z. Li, G. S. Wu, Z. W. Yu, J. Am. Chem. Soc. 2006, 128, 1438.
         | CrossRef | 1:CAS:528:DC%2BD28XjsFeltA%3D%3D&md5=1fdaaa56ea3f33ea445dba61d6139695CAS | open url image1

[39]  Z. W. Yu, I. Noda, Appl. Spectrosc. 2003, 57, 164.
         | CrossRef | 1:CAS:528:DC%2BD3sXivFaju7c%3D&md5=1e4915eb85f525d8ab19f10f2104ed15CAS | open url image1

[40]  M. A. Czarnecki, Appl. Spectrosc. 1999, 53, 1392.
         | CrossRef | 1:CAS:528:DyaK1MXnsV2rtLs%3D&md5=ca98ad81975ac3a9ee5b691343abc611CAS | open url image1

[41]  I. Noda, Y. Ozaki, Two-Dimensional Correlation Spectroscopy: Applications in Vibrational and Optical Spectroscopy 2004 (Wiley: Chichester).

[42]  W. N. Hansen, Spectrochim. Acta 1965, 21, 815.
         | CrossRef | 1:CAS:528:DyaF2MXntFWisA%3D%3D&md5=02003684ec81f0d466e70bb6efda9f54CAS | open url image1

[43]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 2010 (Gaussian Inc.: Wallingford, CT).

[44]  A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
         | CrossRef | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=ebe7dc68a8c38908388e1cd8680e671cCAS | open url image1

[45]  M. S. Gordon, J. S. Binkley, J. A. Pople, W. J. Pietro, W. J. Hehre, J. Am. Chem. Soc. 1982, 104, 2797.
         | CrossRef | 1:CAS:528:DyaL38XhvVOnsb0%3D&md5=7867fd070dd6906f3a8a68fd09f71962CAS | open url image1

[46]  C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
         | CrossRef | 1:CAS:528:DyaL1cXktFWrtbw%3D&md5=1db8a301b13c0d54e6e18228104ee4b7CAS | open url image1

[47]  H. Park, Y. M. Jung, S. H. Yang, W. Shin, J. K. Kang, H. S. Kim, H. J. Lee, W. H. Hong, ChemPhysChem 2010, 11, 1711.
         | CrossRef | 1:CAS:528:DC%2BC3cXntVCqtrg%3D&md5=092243b07784ee4045e2a12be1448b98CAS | open url image1

[48]  X. M. Fu, L. Wang, S. G. Dai, Spectrosc. Spect. Anal. 2011, 31, 625.
         | 1:CAS:528:DC%2BC3MXjtFyhtr0%3D&md5=03a49b0aa66729db36baad91ba5a86e8CAS | open url image1

[49]  http://cccbdb.nist.gov/vibscalejust.asp (accessed 20 March 2012).

[50]  G. Socrates, Infrared and Raman Characteristic Group Frequencies, 3rd Edn 2004 (John Wiley & Sons: Hoboken, NJ).

[51]  K. Fumino, A. Wulf, R. Ludwig, Angew. Chem. Int. Ed. 2008, 47, 8731.
         | CrossRef | 1:CAS:528:DC%2BD1cXhtl2rsLvF&md5=624dc76e847ae9678570ed81f28ce5d8CAS | open url image1

[52]  L. Q. Zhang, Y. Wang, Z. Xu, H. R. Li, J. Phys. Chem. B 2009, 113, 5978.
         | CrossRef | 1:CAS:528:DC%2BD1MXjvFKrtrs%3D&md5=a97c411526e43ee22ee410006bac318dCAS | open url image1

[53]  J. Joseph, E. D. Jemmis, J. Am. Chem. Soc. 2007, 129, 4620.
         | CrossRef | 1:CAS:528:DC%2BD2sXktFegtbw%3D&md5=8845409dbfbe8db04227946aed7bb99fCAS | open url image1

[54]  W. R. Fawcett, A. A. Kloss, J. Phys. Chem. 1996, 100, 2019.
         | CrossRef | 1:CAS:528:DyaK28Xks1OgsA%3D%3D&md5=90aca5eea3e27fac6e69df9a694b54c6CAS | open url image1

[55]  L. J. Zhang, X. S. Feng, H. G. Liu, D. J. Qian, L. Zhang, X. L. Yu, F. Z. Cui, Mater. Lett. 2004, 58, 719.
         | CrossRef | 1:CAS:528:DC%2BD2cXmsVSr&md5=62870fe1f662fc5e182c92eb5277b723CAS | open url image1

[56]  A. Bondi, J. Phys. Chem. 1964, 68, 441.
         | CrossRef | 1:CAS:528:DyaF2cXls1Cgsg%3D%3D&md5=8882544a7040cbdf9697ef71ae18a98cCAS | open url image1

[57]  I. Skarmoutsos, D. Dellis, R. P. Matthews, T. Welton, P. A. Hunt, J. Phys. Chem. B 2012, 116, 4921.
         | CrossRef | 1:CAS:528:DC%2BC38XlsFemtr0%3D&md5=bb771930c77e275bbe5b2b3405c055c6CAS | open url image1

[58]  J. Sponer, P. Hobza, J. Am. Chem. Soc. 1994, 116, 709.
         | CrossRef | 1:CAS:528:DyaK2cXntFOktQ%3D%3D&md5=043758143410f809181605256d4ca8f0CAS | open url image1

[59]  X. B. Hu, Q. X. Lin, J. Y. Gao, Y. T. Wu, Z. B. Zhang, Chem. Phys. Lett. 2011, 516, 35.
         | CrossRef | 1:CAS:528:DC%2BC3MXhtlygtbzM&md5=8897cde35c46b742d5ba7eb6c76a787fCAS | open url image1

[60]  T. Köddermann, C. Wertz, A. Heintz, R. Ludwig, ChemPhysChem 2006, 7, 1944.
         | CrossRef | open url image1



Supplementary MaterialSupplementary Material 131.5 KB Export Citation