Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Ionic Liquids for Lignin Processing: Dissolution, Isolation, and Conversion

Md. Mokarrom Hossain A and Leigh Aldous A B

A School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia.

B Corresponding author. Email: l.aldous@unsw.edu.au




Md. Mokarrom Hossain recently finished his M.Sc. in Chemistry at the University of Dhaka, Bangladesh (2010), and Kyungpook National University, Republic of Korea (2012). He now works as a Ph.D. student in the Aldous group at the School of Chemistry, University of New South Wales, researching lignin processing in ionic liquids.



Leigh Aldous obtained his Ph.D. from the School of Chemistry & Chemical Engineering, Queen’s University Belfast, UK (2007), before holding post-doctoral research fellow positions at the same institution and at the Physical & Theoretical Chemistry Laboratory, University of Oxford, UK. He was appointed as a lecturer at the School of Chemistry, University of New South Wales, in 2011. His research focusses upon ionic liquids, electrochemistry, and physical chemistry.

Australian Journal of Chemistry 65(11) 1465-1477 http://dx.doi.org/10.1071/CH12324
Submitted: 8 July 2012  Accepted: 31 July 2012   Published: 17 September 2012

Abstract

We present a review on the multifunctional use of ionic liquids with respect to lignin processing. In a biorefinery context, lignocellulosics could be used to provide sustainable sources of fuels such as bioethanol, and feedstock molecules for the chemical industry such as phenols and other aromatics. However, separation of lignin from cellulose and hemicellulose is a vital step. Ionic liquids can dissolve extensive quantities of biomass, and even be designed to be multifunctional solvents. We highlight the use of ionic liquids in selectively or non-selectively dissolving lignin, the depolymerization reactions that have been attempted on lignin in ionic liquids, and the effect ionic liquids have been observed to have on such processes. Finally, we present some of the challenges and issues that must be addressed before the informed and large-scale application of ionic liquids can be realized for lignin processing.

Graphical Abstract Image


References

[1]  R. W. Bentley, Energ. Policy 2002, 30, 189.
         | CrossRef | open url image1

[2]  R. A. Kerr, Science 1998, 281, 1129.
         | CrossRef | 1:CAS:528:DyaK1cXls1Clt7c%3D&md5=e78c62a38a100c6c666d17bf051cb7c5CAS | open url image1

[3]  J. H. Clark, F. E. I. Deswarte, T. J. Farmer, Biofuel. Bioprod. Bior. 2009, 3, 72.
         | CrossRef | 1:CAS:528:DC%2BD1MXhtlGgtbY%3D&md5=b19b34688e6343d241ce3ed3bb7c0ef9CAS | open url image1

[4]  B. Brehmer, R. M. Boom, J. Sanders, Chem. Eng. Res. Des. 2009, 87, 1103.
         | CrossRef | 1:CAS:528:DC%2BD1MXht1GjtrrK&md5=5f121742991d9061bf45f9e75e517e11CAS | open url image1

[5]  G. W. Crabtree, N. S. Lewis, Phys. Today 2007, 60, 37.
         | CrossRef | 1:CAS:528:DC%2BD2sXjvV2qsb0%3D&md5=e2e8ed2f4364017b90d07d04ff2b1eedCAS | open url image1

[6]  A. Stark, Energ. Environ. Sci. 2011, 4, 19.
         | CrossRef | 1:CAS:528:DC%2BC3MXivF2ntbk%3D&md5=da020938193565cd2e738229f73cd411CAS | open url image1

[7]  Y. Q. Pu, N. Jiang, A. J. Ragauskas, J. Wood Chem. Technol. 2007, 27, 23.
         | CrossRef | 1:CAS:528:DC%2BD2sXkvFCltLw%3D&md5=6e040faff7f5093285a65bb1e661c9e3CAS | open url image1

[8]  A. J. Ragauskas, C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney, C. A. Eckert, W. J. Frederick, J. P. Hallett, D. J. Leak, C. L. Liotta, J. R. Mielenz, R. Murphy, R. Templer, T. Tschaplinski, Science 2006, 311, 484.
         | CrossRef | 1:CAS:528:DC%2BD28XmvVylsw%3D%3D&md5=f732c7ffcd8d101dd01f17a9be88f9c8CAS | open url image1

[9]  J.-Y. Kim, E.-J. Shin, I.-Y. Eom, K. Won, Y. H. Kim, D. Choi, I.-G. Choi, J. W. Choi, Bioresour. Technol. 2011, 102, 9020.
         | CrossRef | 1:CAS:528:DC%2BC3MXhtV2qtL7K&md5=10ecce6532aad5cbdb937cc5f9728a3fCAS | open url image1

[10]  S. S. Y. Tan, D. R. MacFarlane, Top. Curr. Chem. 2009, 290, 311.
         | CrossRef | 1:CAS:528:DC%2BC3cXovVCrsLw%3D&md5=4920476ee6a053f612554a878d92d14aCAS | open url image1

[11]  J. O. Metzger, C. Bicke, O. Faix, W. Tuszynski, R. Angermann, M. Karas, K. Strupat, Angew. Chem. Int. Ed. 1992, 31, 762.
         | CrossRef | open url image1

[12]  B. J. Cox, S. Jia, Z. C. Zhang, J. G. Ekerdt, Polym. Degrad. Stabil. 2011, 96, 426.
         | CrossRef | 1:CAS:528:DC%2BC3MXisFGksb0%3D&md5=250d8636dc519f0c56cdf4a8dbbefe8eCAS | open url image1

[13]  J. Zakzeski, P. C. A. Bruijnincx, A. L. Jongerius, B. M. Weckhuysen, Chem. Rev. 2010, 110, 3552.
         | CrossRef | 1:CAS:528:DC%2BC3cXjtVyjsrw%3D&md5=2240bfeb4ce1507d1c28d3d9a7aeef0aCAS | open url image1

[14]  J. B. Binder, M. J. Gray, J. F. White, Z. C. Zhang, J. E. Holladay, Biomass Bioenerg. 2009, 33, 1122.
         | CrossRef | 1:CAS:528:DC%2BD1MXptFCgtLk%3D&md5=49ba485237ba6ba96647f415189d7cd7CAS | open url image1

[15]  P. Weerachanchai, S. S. J. Leong, M. W. Chang, C. B. Ching, J.-M. Lee, Bioresour. Technol. 2012, 111, 453.
         | CrossRef | 1:CAS:528:DC%2BC38XksFWltrs%3D&md5=184d4801bd46b74be4fd07c0462bc407CAS | open url image1

[16]  A. Brandt, J. P. Hallett, D. J. Leak, R. J. Murphy, T. Welton, Green Chem. 2010, 12, 672.
         | CrossRef | 1:CAS:528:DC%2BC3cXkt1Grt7g%3D&md5=9ebbf4a2a60fff88126ea3c179efbbf2CAS | open url image1

[17]  S. H. Lee, T. V. Doherty, R. J. Linhardt, J. S. Dordick, Biotechnol. Bioeng. 2009, 102, 1368.
         | CrossRef | 1:CAS:528:DC%2BD1MXjtl2ks70%3D&md5=955bf86359c888922b8ea729fb8f5f29CAS | open url image1

[18]  X.-D. Hou, T. J. Smith, N. Li, M.-H. Zong, Biotechnol. Bioeng. 2012, 109, 2484.
         | CrossRef | 1:CAS:528:DC%2BC38XmtVKmtb0%3D&md5=87d1d0faea910c2710c550f5ac45e0eaCAS | open url image1

[19]  D. Fu, G. Mazza, Y. Tamaki, J. Agric. Food Chem. 2010, 58, 2915.
         | CrossRef | 1:CAS:528:DC%2BC3cXhslSht7c%3D&md5=6dae51002990bcbf886de3345a8f8b78CAS | open url image1

[20]  K. M. DeAngelis, M. Allgaier, Y. Chavarria, J. L. Fortney, P. Hugenholtz, B. Simmons, K. Sublette, W. L. Silver, T. C. Hazen, PLoS ONE 2011, 6, e19306.
         | CrossRef | 1:CAS:528:DC%2BC3MXls1KktLs%3D&md5=ee245454adbb0accc96bb382a344667cCAS | open url image1

[21]  C. Chapple, M. Ladisch, R. Meilan, Nat. Biotechnol. 2007, 25, 746.
         | CrossRef | 1:CAS:528:DC%2BD2sXnsFartbw%3D&md5=02d6d70d7c57f97ec0163f64b869cf7dCAS | open url image1

[22]  A. Casas, J. Palomar, M. V. Alonso, M. Oliet, S. Omar, F. Rodriguez, Ind. Crops Prod. 2012, 37, 155.
         | CrossRef | 1:CAS:528:DC%2BC38XisFWrsbg%3D&md5=96ccf8aae38ca912bdebafb59772c775CAS | open url image1

[23]  B. Li, J. Asikkala, I. Filpponen, D. S. Argyropoulos, Ind. Eng. Chem. Res. 2010, 49, 2477.
         | CrossRef | 1:CAS:528:DC%2BC3cXht1Wnurc%3D&md5=1170324f57a241ecb1f1e56c4ea4985dCAS | open url image1

[24]  L. E. Barrosse-Antle, A. M. Bond, R. G. Compton, A. M. O’Mahony, E. I. Rogers, D. S. Silvester, Chem. Asian J. 2010, 5, 202.
         | CrossRef | 1:CAS:528:DC%2BC3cXhsVGqtrY%3D&md5=509ebacc25e104c30aa5ed7e5a3c9674CAS | open url image1

[25]  N. Sun, X. Jiang, M. L. Maxim, A. Metlen, R. D. Rogers, ChemSusChem 2011, 4, 65.
         | CrossRef | 1:CAS:528:DC%2BC3MXmtFWntQ%3D%3D&md5=1f8dd7d9a0352289e942b66be04d572fCAS | open url image1

[26]  S. S. Y. Tan, D. R. MacFarlane, J. Upfal, L. A. Edye, W. O. S. Doherty, A. F. Patti, J. M. Pringle, J. L. Scott, Green Chem. 2009, 11, 339.
         | CrossRef | 1:CAS:528:DC%2BD1MXivVOltb8%3D&md5=b38806d1003f9b6f1c826d6c6eb11c5cCAS | open url image1

[27]  R. P. Swatloski, S. K. Spear, J. D. Holbrey, R. D. Rogers, J. Am. Chem. Soc. 2002, 124, 4974.
         | CrossRef | 1:CAS:528:DC%2BD38XivVOmt70%3D&md5=40b751be280e664b18989fc93a69f6b4CAS | open url image1

[28]  N. Sun, H. Rodriguez, M. Rahman, R. D. Rogers, Chem. Commun. 2011, 1405.
         | CrossRef | 1:CAS:528:DC%2BC3MXot1Ciuw%3D%3D&md5=0cf2573e9023fb03c487baf507b5980dCAS | open url image1

[29]  D. A. Fort, R. C. Remsing, R. P. Swatloski, P. Moyna, G. Moyna, R. D. Rogers, Green Chem. 2007, 9, 63.
         | CrossRef | 1:CAS:528:DC%2BD2sXhtVehsg%3D%3D&md5=e852e4b213892fd6b0077de513adc6fcCAS | open url image1

[30]  N. Sun, M. Rahman, Y. Qin, M. L. Maxim, H. Rodriguez, R. D. Rogers, Green Chem. 2009, 11, 646.
         | CrossRef | 1:CAS:528:DC%2BD1MXlsl2itb4%3D&md5=40e58f1f141c13f762f1b7d853164e9cCAS | open url image1

[31]  L. Wei, K. Li, Y. Ma, X. Hou, Ind. Crops Prod. 2012, 37, 227.
         | CrossRef | 1:CAS:528:DC%2BC38XisFWrtrs%3D&md5=553e3799ed480e159da53e62105c5ebdCAS | open url image1

[32]  A. P. Dadi, S. Varanasi, C. A. Schall, Biotechnol. Bioeng. 2006, 95, 904.
         | CrossRef | 1:CAS:528:DC%2BD28XhtF2qsrfJ&md5=97a8cfdf73a04175fc41c169e5df1933CAS | open url image1

[33]  I. Kilpelainen, H. Xie, A. King, M. Granstrom, S. Heikkinen, D. S. Argyropoulos, J. Agric. Food Chem. 2007, 55, 9142.
         | CrossRef | open url image1

[34]  A. Pinkert, K. N. Marsh, S. S. Pang, M. P. Staiger, Chem. Rev. 2009, 109, 6712.
         | CrossRef | 1:CAS:528:DC%2BD1MXhtFCjt7nJ&md5=0f993cddf483c7cdfe358d5540affb9dCAS | open url image1

[35]  S. D. Zhu, Y. X. Wu, Q. M. Chen, Z. N. Yu, C. W. Wang, S. W. Jin, Y. G. Ding, G. Wu, Green Chem. 2006, 8, 325.
         | CrossRef | 1:CAS:528:DC%2BD28XivFOlur4%3D&md5=ddc93776b585dce1c7b4a5435296fde6CAS | open url image1

[36]  D. C. Dibble, C. L. Li, L. Sun, A. George, A. R. L. Cheng, O. P. Cetinkol, P. Benke, B. M. Holmes, S. Singh, B. A. Simmons, Green Chem. 2011, 13, 3255.
         | CrossRef | 1:CAS:528:DC%2BC3MXhsVSitLrJ&md5=392d4c7826806f3f7ff35a8839e51a10CAS | open url image1

[37]  W. Lan, C. F. Liu, R. G. Sun, J. Agric. Food Chem. 2011, 59, 8691.
         | CrossRef | 1:CAS:528:DC%2BC3MXptVOjs7w%3D&md5=5d6c70a9a8340cd76ae11e7aa1ff38e6CAS | open url image1

[38]  N. Muhammad, Z. Man, M. Bustam Khalil, Eur. J. Wood Wood Prod. 2012, 70, 125.
         | CrossRef | 1:CAS:528:DC%2BC38XjslCrsw%3D%3D&md5=dfbc35a7ce9588e7d6ccbee782d624abCAS | open url image1

[39]  M. Mora-Pale, L. Meli, T. V. Doherty, R. J. Linhardt, J. S. Dordick, Biotechnol. Bioeng. 2011, 108, 1229.
         | CrossRef | 1:CAS:528:DC%2BC3MXksFekt70%3D&md5=1cf30a82299b4ebb876e26c7f5a8729cCAS | open url image1

[40]  P. Mäki-Arvela, I. Anugwom, P. Virtanen, R. Sjoeholm, J. P. Mikkola, Ind. Crops Prod. 2010, 32, 175.
         | CrossRef | open url image1

[41]  H. Wang, G. Gurau, R. D. Rogers, Chem. Soc. Rev. 2012, 41, 1519.
         | CrossRef | 1:CAS:528:DC%2BC38XhsVajsrw%3D&md5=0d7b4b981a1c2dbba348a838a7377493CAS | open url image1

[42]  L. Moens, N. Khan, in Green Industrial Applications of Ionic Liquids (Eds R. D. Rogers, K. R. Seddon, S. V. Volkov) 2002, pp. 157–171 (Kluwer Academic: Dordrecht).

[43]  S. Singh, B. A. Simmons, K. P. Vogel, Biotechnol. Bioeng. 2009, 104, 68.
         | CrossRef | 1:CAS:528:DC%2BD1MXptVGksrk%3D&md5=9f5895e38bff3f430d8734c6a4c54641CAS | open url image1

[44]  T. G. A. Youngs, C. Hardacre, J. D. Holbrey, J. Phys. Chem. B 2007, 111, 13765.
         | CrossRef | 1:CAS:528:DC%2BD2sXhtlSgurjM&md5=837330c04acac2644831b86091ce9ff8CAS | open url image1

[45]  T. G. A. Youngs, J. D. Holbrey, C. L. Mullan, S. E. Norman, M. C. Lagunas, C. D’Agostino, M. D. Mantle, L. F. Gladden, D. T. Bowron, C. Hardacre, Chem. Sci. 2011, 2, 1594.
         | CrossRef | 1:CAS:528:DC%2BC3MXoslWksrY%3D&md5=6f5cc27ce940c22f5452beb17771c2dfCAS | open url image1

[46]  G. Cheng, P. Varanasi, C. L. Li, H. B. Liu, Y. B. Menichenko, B. A. Simmons, M. S. Kent, S. Singh, Biomacromolecules 2011, 12, 933.
         | CrossRef | 1:CAS:528:DC%2BC3MXisVyks78%3D&md5=599459e9c0625bc8e6d6cdf9525aed1eCAS | open url image1

[47]  M. Balakshin, E. Capanema, H. Gracz, H. M. Chang, H. Jameel, Planta 2011, 233, 1097.
         | CrossRef | 1:CAS:528:DC%2BC3MXmsFGgt7c%3D&md5=93f1785f93baa46c5b1257c77f393f64CAS | open url image1

[48]  A. Pinkert, D. F. Goeke, K. N. Marsh, S. Pang, Green Chem. 2011, 13, 3124.
         | CrossRef | 1:CAS:528:DC%2BC3MXhsVSitL3K&md5=0cc366a08238a30e045131cd0f5250a1CAS | open url image1

[49]  F. Guo, Z. Fang, T.-J. Zhou, Bioresour. Technol. 2012, 112, 313.
         | CrossRef | 1:CAS:528:DC%2BC38XkvFOlurc%3D&md5=fc70c0d059dfff777b09ca78d7ddfa12CAS | open url image1

[50]  J. Zakzeski, A. L. Jongerius, B. M. Weckhuysen, Green Chem. 2010, 12, 1225.
         | CrossRef | 1:CAS:528:DC%2BC3cXotlyrtbo%3D&md5=290d99dc2d50b120a6249df5f1d67585CAS | open url image1

[51]  Q. Xin, K. Pfeiffer, J. M. Prausnitz, D. S. Clark, H. W. Blanch, Biotechnol. Bioeng. 2012, 109, 346.
         | CrossRef | 1:CAS:528:DC%2BC3MXhsVyru7rJ&md5=8f2381d5147b0993b426b914cc34ca5aCAS | open url image1

[52]  A. George, K. Tran, T. J. Morgan, P. I. Benke, C. Berrueco, E. Lorente, B. C. Wu, J. D. Keasling, B. A. Simmons, B. M. Holmes, Green Chem. 2011, 13, 3375.
         | CrossRef | 1:CAS:528:DC%2BC3MXhsFantLjF&md5=d682f5002975e7b6ae5618b29f3d291bCAS | open url image1

[53]  A. Casas, M. V. Alonso, M. Oliet, E. Rojo, F. Rodriguez, J. Chem. Technol. Biot. 2012, 87, 472.
         | CrossRef | 1:CAS:528:DC%2BC38XhvVOrsb4%3D&md5=8af7990205c0971e97a8e62e2f6de531CAS | open url image1

[54]  L. M. Kline, D. G. Hayes, A. R. Womac, N. Labbe, Bioresources 2010, 5, 1366.
         | 1:CAS:528:DC%2BC3cXpsVKnsr4%3D&md5=15a718b35dd1fce8e1ad189b0a30a425CAS | open url image1

[55]  S. Padmanabhan, E. Zaia, K. Wu, H. W. Blanch, D. S. Clark, A. T. Bell, J. M. Prausnitz, Sep. Sci. Technol. 2012, 47, 370.
         | CrossRef | 1:CAS:528:DC%2BC38XhvVOisrs%3D&md5=948294e694de48ebb3de0d4a489f5db6CAS | open url image1

[56]  M. Zavrel, D. Bross, M. Funke, J. Buchs, A. C. Spiess, Bioresour. Technol. 2009, 100, 2580.
         | CrossRef | 1:CAS:528:DC%2BD1MXit1aiu7c%3D&md5=54bcb9ade0ac0f06a9058a1e1ff145a0CAS | open url image1

[57]  J. D. Holbrey, W. M. Reichert, M. Nieuwenhuyzen, O. Sheppard, C. Hardacre, R. D. Rogers, Chem. Commun. 2003, 476.
         | CrossRef | 1:CAS:528:DC%2BD3sXhtVOns7Y%3D&md5=9b5b48d981ccaf941cf807bf0f510b47CAS | open url image1

[58]  H. Lateef, S. Grimes, P. Kewcharoenwong, B. Feinberg, J. Chem. Technol. Biot. 2009, 84, 1818.
         | CrossRef | 1:CAS:528:DC%2BD1MXhtlyqsLvJ&md5=dd84e27f7a85c6e6ac3336d6ee0306f6CAS | open url image1

[59]  S. Q. Han, J. L. Li, S. D. Zhu, R. Chen, Y. X. Wu, X. Y. Zhang, Z. N. Yu, Bioresources 2009, 4, 825.
         | 1:CAS:528:DC%2BD1MXotVyrtrs%3D&md5=bdfb90422cb456d3b4de42cf75142eecCAS | open url image1

[60]  C. Froschauer, M. Hummel, G. Laus, H. Schottenberger, H. Sixta, H. K. Weber, G. Zuckerstatter, Biomacromolecules 2012, 13, 1973.
         | CrossRef | 1:CAS:528:DC%2BC38XntFShur0%3D&md5=e20a24dde74a2a9c68169ff677a7d74eCAS | open url image1

[61]  O. A. El Seoud, A. Koschella, L. C. Fidale, S. Dorn, T. Heinze, Biomacromolecules 2007, 8, 2629.
         | CrossRef | 1:CAS:528:DC%2BD2sXovFCltLo%3D&md5=f2b5afafd5c7b75fed1467342da59789CAS | open url image1

[62]  A. Brandt, M. J. Ray, T. Q. To, D. J. Leak, R. J. Murphy, T. Welton, Green Chem. 2011, 13, 2489.
         | CrossRef | 1:CAS:528:DC%2BC3MXhtV2hsrzO&md5=48d4bf3b62d855e1675134d516b8974fCAS | open url image1

[63]  J. G. Lynam, R. M. Toufiq, V. R. Vasquez, C. J. Coronella, Bioresour. Technol. 2012, 114, 629.
         | CrossRef | 1:CAS:528:DC%2BC38Xms1antL8%3D&md5=d86cdca426f8f51305d67e25c0bfb7e1CAS | open url image1

[64]  C. Sievers, M. B. Valenzuela-Olarte, T. Marzialetti, I. Musin, P. K. Agrawal, C. W. Jones, Ind. Eng. Chem. Res. 2009, 48, 1277.
         | CrossRef | 1:CAS:528:DC%2BD1MXhsFCiuw%3D%3D&md5=2cba7f6096da334fd40176e75ff01758CAS | open url image1

[65]  C. Li, Q. Wang, Z. K. Zhao, Green Chem. 2008, 10, 177.
         | CrossRef | 1:CAS:528:DC%2BD1cXhsVSis70%3D&md5=75552354815e58e770a500463ca1be6cCAS | open url image1

[66]  J. B. Binder, R. T. Raines, Proc. Natl. Acad. Sci. USA 2010, 107, 4516.
         | CrossRef | 1:CAS:528:DC%2BC3cXjs1emtb4%3D&md5=4c602646b7b1c2d41d976a73ec995037CAS | open url image1

[67]  B. Li, I. Filpponen, D. S. Argyropoulos, Ind. Eng. Chem. Res. 2010, 49, 3126.
         | CrossRef | 1:CAS:528:DC%2BC3cXislKit7Y%3D&md5=86e71cc7aa9ed26c20e861a2130029a2CAS | open url image1

[68]  H. Yu, J. Hu, J. Fan, J. Chang, Ind. Eng. Chem. Res. 2012, 51, 3452.
         | CrossRef | 1:CAS:528:DC%2BC38XpvVOqtg%3D%3D&md5=7adfb4b1c7dced311518ccc712530076CAS | open url image1

[69]  W. Y. Li, N. Sun, B. Stoner, X. Y. Jiang, X. M. Lu, R. D. Rogers, Green Chem. 2011, 13, 2038.
         | CrossRef | 1:CAS:528:DC%2BC3MXpslGhtrc%3D&md5=8365d53e970e03f67ae41ef569f0e8fbCAS | open url image1

[70]  D. Diedericks, E. van Rensburg, M. D. Garcia-Aparicio, J. F. Gorgens, Biotechnol. Progr. 2012, 28, 76.
         | CrossRef | 1:CAS:528:DC%2BC38Xis1Ogsrs%3D&md5=103cdea2e847380b6277cb706e63c8daCAS | open url image1

[71]  A. Brandt, J. K. Erickson, J. P. Hallett, R. J. Murphy, A. Potthast, M. J. Ray, T. Rosenau, M. Schrems, T. Welton, Green Chem. 2012, 14, 1079.
         | CrossRef | 1:CAS:528:DC%2BC38XksVKrsr0%3D&md5=68a25f139784a5756b50552aeb174b4fCAS | open url image1

[72]  Khudyakov J. I.D’haeseleer P.Borglin S. E.DeAngelis K. M.Woo H.Lindquist E. A.Hazen T. C.Simmons B. A.Thelen M. P. Proc. Natl. Acad. Sci. USA 2012. 10.1073/PNAS.1112750109

[73]  E. Reichert, R. Wintringer, D. A. Volmer, R. Hempelmann, Phys. Chem. Chem. Phys. 2012, 14, 5214.
         | CrossRef | 1:CAS:528:DC%2BC38Xkt1CmtLw%3D&md5=35b2bafe1f7147de07c0c9b1e546e5abCAS | open url image1

[74]  S. Y. Jia, B. J. Cox, X. W. Guo, Z. C. Zhang, J. G. Ekerdt, Ind. Eng. Chem. Res. 2011, 50, 849.
         | CrossRef | 1:CAS:528:DC%2BC3cXhsFKmtrrE&md5=23a6abf33c4b2228ebeb57be6628d173CAS | open url image1

[75]  S. Kubo, K. Hashida, T. Yamada, S. Hishiyama, K. Magara, M. Kishino, H. Ohno, S. Hosoya, J. Wood Chem. Technol. 2008, 28, 84.
         | CrossRef | 1:CAS:528:DC%2BD1cXnsVSmsb0%3D&md5=9951d655576e0b136929c67584f457c0CAS | open url image1

[76]  J. Zakzeski, P. C. A. Bruijnincx, B. M. Weckhuysen, Green Chem. 2011, 13, 671.
         | CrossRef | 1:CAS:528:DC%2BC3MXivVGisb8%3D&md5=1bdbdd2fe71bb97b47da2ad694048b7eCAS | open url image1

[77]  K. Stärk, N. Taccardi, A. Bosmann, P. Wasserscheid, ChemSusChem 2010, 3, 719.
         | CrossRef | open url image1

[78]  C. Zhao, H. Z. Wang, N. Yan, C. X. Xiao, X. D. Mu, P. J. Dyson, Y. Kou, J. Catal. 2007, 250, 33.
         | CrossRef | 1:CAS:528:DC%2BD2sXotl2qsb0%3D&md5=4408736cf0f4710bdcab5f7dc3a66c84CAS | open url image1

[79]  X. D. Mu, J. Q. Meng, Z. C. Li, Y. Kou, J. Am. Chem. Soc. 2005, 127, 9694.
         | CrossRef | 1:CAS:528:DC%2BD2MXltVylsr0%3D&md5=176586466605616a33d13012693ce111CAS | open url image1

[80]  N. Yan, Y. A. Yuan, R. Dykeman, Y. A. Kou, P. J. Dyson, Angew. Chem. Int. Ed. 2010, 49, 5549.
         | CrossRef | 1:CAS:528:DC%2BC3cXps1ChtLs%3D&md5=7b66098270a876e82b92fbc5bc64b953CAS | open url image1

[81]  A. C. Chen, E. I. Rogers, R. G. Compton, Electroanal. 2010, 22, 1037.
         | CrossRef | 1:CAS:528:DC%2BC3cXlvFWnsLk%3D&md5=c87000134049e3be5ae90a67f81dd0b2CAS | open url image1

[82]  A. M. O’Mahony, D. S. Silvester, L. Aldous, C. Hardacre, R. G. Compton, J. Chem. Eng. Data 2008, 53, 2884.
         | CrossRef | 1:CAS:528:DC%2BD1cXhtlCiu7vN&md5=e13b27b0adf2cd2afe2f84d7a84390d5CAS | open url image1

[83]  The California Energy Commission, Energy Almanac – Estimated 2012 Gasoline Price Breakdown & Margins Details 2012. Available at http://energyalmanac.ca.gov/gasoline/margins/index.php [Verified 7 July 2012]



Export Citation