Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Ionic Liquids for Lignin Processing: Dissolution, Isolation, and Conversion

Md. Mokarrom Hossain A and Leigh Aldous A B
+ Author Affiliations
- Author Affiliations

A School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia.

B Corresponding author. Email: l.aldous@unsw.edu.au




Md. Mokarrom Hossain recently finished his M.Sc. in Chemistry at the University of Dhaka, Bangladesh (2010), and Kyungpook National University, Republic of Korea (2012). He now works as a Ph.D. student in the Aldous group at the School of Chemistry, University of New South Wales, researching lignin processing in ionic liquids.



Leigh Aldous obtained his Ph.D. from the School of Chemistry & Chemical Engineering, Queen’s University Belfast, UK (2007), before holding post-doctoral research fellow positions at the same institution and at the Physical & Theoretical Chemistry Laboratory, University of Oxford, UK. He was appointed as a lecturer at the School of Chemistry, University of New South Wales, in 2011. His research focusses upon ionic liquids, electrochemistry, and physical chemistry.

Australian Journal of Chemistry 65(11) 1465-1477 https://doi.org/10.1071/CH12324
Submitted: 8 July 2012  Accepted: 31 July 2012   Published: 17 September 2012

Abstract

We present a review on the multifunctional use of ionic liquids with respect to lignin processing. In a biorefinery context, lignocellulosics could be used to provide sustainable sources of fuels such as bioethanol, and feedstock molecules for the chemical industry such as phenols and other aromatics. However, separation of lignin from cellulose and hemicellulose is a vital step. Ionic liquids can dissolve extensive quantities of biomass, and even be designed to be multifunctional solvents. We highlight the use of ionic liquids in selectively or non-selectively dissolving lignin, the depolymerization reactions that have been attempted on lignin in ionic liquids, and the effect ionic liquids have been observed to have on such processes. Finally, we present some of the challenges and issues that must be addressed before the informed and large-scale application of ionic liquids can be realized for lignin processing.


References

[1]  R. W. Bentley, Energ. Policy 2002, 30, 189.
         | CrossRef |

[2]  R. A. Kerr, Science 1998, 281, 1129.
         | CrossRef | 1:CAS:528:DyaK1cXls1Clt7c%3D&md5=e78c62a38a100c6c666d17bf051cb7c5CAS |

[3]  J. H. Clark, F. E. I. Deswarte, T. J. Farmer, Biofuel. Bioprod. Bior. 2009, 3, 72.
         | CrossRef | 1:CAS:528:DC%2BD1MXhtlGgtbY%3D&md5=b19b34688e6343d241ce3ed3bb7c0ef9CAS |

[4]  B. Brehmer, R. M. Boom, J. Sanders, Chem. Eng. Res. Des. 2009, 87, 1103.
         | CrossRef | 1:CAS:528:DC%2BD1MXht1GjtrrK&md5=5f121742991d9061bf45f9e75e517e11CAS |

[5]  G. W. Crabtree, N. S. Lewis, Phys. Today 2007, 60, 37.
         | CrossRef | 1:CAS:528:DC%2BD2sXjvV2qsb0%3D&md5=e2e8ed2f4364017b90d07d04ff2b1eedCAS |

[6]  A. Stark, Energ. Environ. Sci. 2011, 4, 19.
         | CrossRef | 1:CAS:528:DC%2BC3MXivF2ntbk%3D&md5=da020938193565cd2e738229f73cd411CAS |

[7]  Y. Q. Pu, N. Jiang, A. J. Ragauskas, J. Wood Chem. Technol. 2007, 27, 23.
         | CrossRef | 1:CAS:528:DC%2BD2sXkvFCltLw%3D&md5=6e040faff7f5093285a65bb1e661c9e3CAS |

[8]  A. J. Ragauskas, C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney, C. A. Eckert, W. J. Frederick, J. P. Hallett, D. J. Leak, C. L. Liotta, J. R. Mielenz, R. Murphy, R. Templer, T. Tschaplinski, Science 2006, 311, 484.
         | CrossRef | 1:CAS:528:DC%2BD28XmvVylsw%3D%3D&md5=f732c7ffcd8d101dd01f17a9be88f9c8CAS |

[9]  J.-Y. Kim, E.-J. Shin, I.-Y. Eom, K. Won, Y. H. Kim, D. Choi, I.-G. Choi, J. W. Choi, Bioresour. Technol. 2011, 102, 9020.
         | CrossRef | 1:CAS:528:DC%2BC3MXhtV2qtL7K&md5=10ecce6532aad5cbdb937cc5f9728a3fCAS |

[10]  S. S. Y. Tan, D. R. MacFarlane, Top. Curr. Chem. 2009, 290, 311.
         | CrossRef | 1:CAS:528:DC%2BC3cXovVCrsLw%3D&md5=4920476ee6a053f612554a878d92d14aCAS |

[11]  J. O. Metzger, C. Bicke, O. Faix, W. Tuszynski, R. Angermann, M. Karas, K. Strupat, Angew. Chem. Int. Ed. 1992, 31, 762.
         | CrossRef |

[12]  B. J. Cox, S. Jia, Z. C. Zhang, J. G. Ekerdt, Polym. Degrad. Stabil. 2011, 96, 426.
         | CrossRef | 1:CAS:528:DC%2BC3MXisFGksb0%3D&md5=250d8636dc519f0c56cdf4a8dbbefe8eCAS |

[13]  J. Zakzeski, P. C. A. Bruijnincx, A. L. Jongerius, B. M. Weckhuysen, Chem. Rev. 2010, 110, 3552.
         | CrossRef | 1:CAS:528:DC%2BC3cXjtVyjsrw%3D&md5=2240bfeb4ce1507d1c28d3d9a7aeef0aCAS |

[14]  J. B. Binder, M. J. Gray, J. F. White, Z. C. Zhang, J. E. Holladay, Biomass Bioenerg. 2009, 33, 1122.
         | CrossRef | 1:CAS:528:DC%2BD1MXptFCgtLk%3D&md5=49ba485237ba6ba96647f415189d7cd7CAS |

[15]  P. Weerachanchai, S. S. J. Leong, M. W. Chang, C. B. Ching, J.-M. Lee, Bioresour. Technol. 2012, 111, 453.
         | CrossRef | 1:CAS:528:DC%2BC38XksFWltrs%3D&md5=184d4801bd46b74be4fd07c0462bc407CAS |

[16]  A. Brandt, J. P. Hallett, D. J. Leak, R. J. Murphy, T. Welton, Green Chem. 2010, 12, 672.
         | CrossRef | 1:CAS:528:DC%2BC3cXkt1Grt7g%3D&md5=9ebbf4a2a60fff88126ea3c179efbbf2CAS |

[17]  S. H. Lee, T. V. Doherty, R. J. Linhardt, J. S. Dordick, Biotechnol. Bioeng. 2009, 102, 1368.
         | CrossRef | 1:CAS:528:DC%2BD1MXjtl2ks70%3D&md5=955bf86359c888922b8ea729fb8f5f29CAS |

[18]  X.-D. Hou, T. J. Smith, N. Li, M.-H. Zong, Biotechnol. Bioeng. 2012, 109, 2484.
         | CrossRef | 1:CAS:528:DC%2BC38XmtVKmtb0%3D&md5=87d1d0faea910c2710c550f5ac45e0eaCAS |

[19]  D. Fu, G. Mazza, Y. Tamaki, J. Agric. Food Chem. 2010, 58, 2915.
         | CrossRef | 1:CAS:528:DC%2BC3cXhslSht7c%3D&md5=6dae51002990bcbf886de3345a8f8b78CAS |

[20]  K. M. DeAngelis, M. Allgaier, Y. Chavarria, J. L. Fortney, P. Hugenholtz, B. Simmons, K. Sublette, W. L. Silver, T. C. Hazen, PLoS ONE 2011, 6, e19306.
         | CrossRef | 1:CAS:528:DC%2BC3MXls1KktLs%3D&md5=ee245454adbb0accc96bb382a344667cCAS |

[21]  C. Chapple, M. Ladisch, R. Meilan, Nat. Biotechnol. 2007, 25, 746.
         | CrossRef | 1:CAS:528:DC%2BD2sXnsFartbw%3D&md5=02d6d70d7c57f97ec0163f64b869cf7dCAS |

[22]  A. Casas, J. Palomar, M. V. Alonso, M. Oliet, S. Omar, F. Rodriguez, Ind. Crops Prod. 2012, 37, 155.
         | CrossRef | 1:CAS:528:DC%2BC38XisFWrsbg%3D&md5=96ccf8aae38ca912bdebafb59772c775CAS |

[23]  B. Li, J. Asikkala, I. Filpponen, D. S. Argyropoulos, Ind. Eng. Chem. Res. 2010, 49, 2477.
         | CrossRef | 1:CAS:528:DC%2BC3cXht1Wnurc%3D&md5=1170324f57a241ecb1f1e56c4ea4985dCAS |

[24]  L. E. Barrosse-Antle, A. M. Bond, R. G. Compton, A. M. O’Mahony, E. I. Rogers, D. S. Silvester, Chem. Asian J. 2010, 5, 202.
         | CrossRef | 1:CAS:528:DC%2BC3cXhsVGqtrY%3D&md5=509ebacc25e104c30aa5ed7e5a3c9674CAS |

[25]  N. Sun, X. Jiang, M. L. Maxim, A. Metlen, R. D. Rogers, ChemSusChem 2011, 4, 65.
         | CrossRef | 1:CAS:528:DC%2BC3MXmtFWntQ%3D%3D&md5=1f8dd7d9a0352289e942b66be04d572fCAS |

[26]  S. S. Y. Tan, D. R. MacFarlane, J. Upfal, L. A. Edye, W. O. S. Doherty, A. F. Patti, J. M. Pringle, J. L. Scott, Green Chem. 2009, 11, 339.
         | CrossRef | 1:CAS:528:DC%2BD1MXivVOltb8%3D&md5=b38806d1003f9b6f1c826d6c6eb11c5cCAS |

[27]  R. P. Swatloski, S. K. Spear, J. D. Holbrey, R. D. Rogers, J. Am. Chem. Soc. 2002, 124, 4974.
         | CrossRef | 1:CAS:528:DC%2BD38XivVOmt70%3D&md5=40b751be280e664b18989fc93a69f6b4CAS |

[28]  N. Sun, H. Rodriguez, M. Rahman, R. D. Rogers, Chem. Commun. 2011, 1405.
         | CrossRef | 1:CAS:528:DC%2BC3MXot1Ciuw%3D%3D&md5=0cf2573e9023fb03c487baf507b5980dCAS |

[29]  D. A. Fort, R. C. Remsing, R. P. Swatloski, P. Moyna, G. Moyna, R. D. Rogers, Green Chem. 2007, 9, 63.
         | CrossRef | 1:CAS:528:DC%2BD2sXhtVehsg%3D%3D&md5=e852e4b213892fd6b0077de513adc6fcCAS |

[30]  N. Sun, M. Rahman, Y. Qin, M. L. Maxim, H. Rodriguez, R. D. Rogers, Green Chem. 2009, 11, 646.
         | CrossRef | 1:CAS:528:DC%2BD1MXlsl2itb4%3D&md5=40e58f1f141c13f762f1b7d853164e9cCAS |

[31]  L. Wei, K. Li, Y. Ma, X. Hou, Ind. Crops Prod. 2012, 37, 227.
         | CrossRef | 1:CAS:528:DC%2BC38XisFWrtrs%3D&md5=553e3799ed480e159da53e62105c5ebdCAS |

[32]  A. P. Dadi, S. Varanasi, C. A. Schall, Biotechnol. Bioeng. 2006, 95, 904.
         | CrossRef | 1:CAS:528:DC%2BD28XhtF2qsrfJ&md5=97a8cfdf73a04175fc41c169e5df1933CAS |

[33]  I. Kilpelainen, H. Xie, A. King, M. Granstrom, S. Heikkinen, D. S. Argyropoulos, J. Agric. Food Chem. 2007, 55, 9142.
         | CrossRef |

[34]  A. Pinkert, K. N. Marsh, S. S. Pang, M. P. Staiger, Chem. Rev. 2009, 109, 6712.
         | CrossRef | 1:CAS:528:DC%2BD1MXhtFCjt7nJ&md5=0f993cddf483c7cdfe358d5540affb9dCAS |

[35]  S. D. Zhu, Y. X. Wu, Q. M. Chen, Z. N. Yu, C. W. Wang, S. W. Jin, Y. G. Ding, G. Wu, Green Chem. 2006, 8, 325.
         | CrossRef | 1:CAS:528:DC%2BD28XivFOlur4%3D&md5=ddc93776b585dce1c7b4a5435296fde6CAS |

[36]  D. C. Dibble, C. L. Li, L. Sun, A. George, A. R. L. Cheng, O. P. Cetinkol, P. Benke, B. M. Holmes, S. Singh, B. A. Simmons, Green Chem. 2011, 13, 3255.
         | CrossRef | 1:CAS:528:DC%2BC3MXhsVSitLrJ&md5=392d4c7826806f3f7ff35a8839e51a10CAS |

[37]  W. Lan, C. F. Liu, R. G. Sun, J. Agric. Food Chem. 2011, 59, 8691.
         | CrossRef | 1:CAS:528:DC%2BC3MXptVOjs7w%3D&md5=5d6c70a9a8340cd76ae11e7aa1ff38e6CAS |

[38]  N. Muhammad, Z. Man, M. Bustam Khalil, Eur. J. Wood Wood Prod. 2012, 70, 125.
         | CrossRef | 1:CAS:528:DC%2BC38XjslCrsw%3D%3D&md5=dfbc35a7ce9588e7d6ccbee782d624abCAS |

[39]  M. Mora-Pale, L. Meli, T. V. Doherty, R. J. Linhardt, J. S. Dordick, Biotechnol. Bioeng. 2011, 108, 1229.
         | CrossRef | 1:CAS:528:DC%2BC3MXksFekt70%3D&md5=1cf30a82299b4ebb876e26c7f5a8729cCAS |

[40]  P. Mäki-Arvela, I. Anugwom, P. Virtanen, R. Sjoeholm, J. P. Mikkola, Ind. Crops Prod. 2010, 32, 175.
         | CrossRef |

[41]  H. Wang, G. Gurau, R. D. Rogers, Chem. Soc. Rev. 2012, 41, 1519.
         | CrossRef | 1:CAS:528:DC%2BC38XhsVajsrw%3D&md5=0d7b4b981a1c2dbba348a838a7377493CAS |

[42]  L. Moens, N. Khan, in Green Industrial Applications of Ionic Liquids (Eds R. D. Rogers, K. R. Seddon, S. V. Volkov) 2002, pp. 157–171 (Kluwer Academic: Dordrecht).

[43]  S. Singh, B. A. Simmons, K. P. Vogel, Biotechnol. Bioeng. 2009, 104, 68.
         | CrossRef | 1:CAS:528:DC%2BD1MXptVGksrk%3D&md5=9f5895e38bff3f430d8734c6a4c54641CAS |

[44]  T. G. A. Youngs, C. Hardacre, J. D. Holbrey, J. Phys. Chem. B 2007, 111, 13765.
         | CrossRef | 1:CAS:528:DC%2BD2sXhtlSgurjM&md5=837330c04acac2644831b86091ce9ff8CAS |

[45]  T. G. A. Youngs, J. D. Holbrey, C. L. Mullan, S. E. Norman, M. C. Lagunas, C. D’Agostino, M. D. Mantle, L. F. Gladden, D. T. Bowron, C. Hardacre, Chem. Sci. 2011, 2, 1594.
         | CrossRef | 1:CAS:528:DC%2BC3MXoslWksrY%3D&md5=6f5cc27ce940c22f5452beb17771c2dfCAS |

[46]  G. Cheng, P. Varanasi, C. L. Li, H. B. Liu, Y. B. Menichenko, B. A. Simmons, M. S. Kent, S. Singh, Biomacromolecules 2011, 12, 933.
         | CrossRef | 1:CAS:528:DC%2BC3MXisVyks78%3D&md5=599459e9c0625bc8e6d6cdf9525aed1eCAS |

[47]  M. Balakshin, E. Capanema, H. Gracz, H. M. Chang, H. Jameel, Planta 2011, 233, 1097.
         | CrossRef | 1:CAS:528:DC%2BC3MXmsFGgt7c%3D&md5=93f1785f93baa46c5b1257c77f393f64CAS |

[48]  A. Pinkert, D. F. Goeke, K. N. Marsh, S. Pang, Green Chem. 2011, 13, 3124.
         | CrossRef | 1:CAS:528:DC%2BC3MXhsVSitL3K&md5=0cc366a08238a30e045131cd0f5250a1CAS |

[49]  F. Guo, Z. Fang, T.-J. Zhou, Bioresour. Technol. 2012, 112, 313.
         | CrossRef | 1:CAS:528:DC%2BC38XkvFOlurc%3D&md5=fc70c0d059dfff777b09ca78d7ddfa12CAS |

[50]  J. Zakzeski, A. L. Jongerius, B. M. Weckhuysen, Green Chem. 2010, 12, 1225.
         | CrossRef | 1:CAS:528:DC%2BC3cXotlyrtbo%3D&md5=290d99dc2d50b120a6249df5f1d67585CAS |

[51]  Q. Xin, K. Pfeiffer, J. M. Prausnitz, D. S. Clark, H. W. Blanch, Biotechnol. Bioeng. 2012, 109, 346.
         | CrossRef | 1:CAS:528:DC%2BC3MXhsVyru7rJ&md5=8f2381d5147b0993b426b914cc34ca5aCAS |

[52]  A. George, K. Tran, T. J. Morgan, P. I. Benke, C. Berrueco, E. Lorente, B. C. Wu, J. D. Keasling, B. A. Simmons, B. M. Holmes, Green Chem. 2011, 13, 3375.
         | CrossRef | 1:CAS:528:DC%2BC3MXhsFantLjF&md5=d682f5002975e7b6ae5618b29f3d291bCAS |

[53]  A. Casas, M. V. Alonso, M. Oliet, E. Rojo, F. Rodriguez, J. Chem. Technol. Biot. 2012, 87, 472.
         | CrossRef | 1:CAS:528:DC%2BC38XhvVOrsb4%3D&md5=8af7990205c0971e97a8e62e2f6de531CAS |

[54]  L. M. Kline, D. G. Hayes, A. R. Womac, N. Labbe, Bioresources 2010, 5, 1366.
         | 1:CAS:528:DC%2BC3cXpsVKnsr4%3D&md5=15a718b35dd1fce8e1ad189b0a30a425CAS |

[55]  S. Padmanabhan, E. Zaia, K. Wu, H. W. Blanch, D. S. Clark, A. T. Bell, J. M. Prausnitz, Sep. Sci. Technol. 2012, 47, 370.
         | CrossRef | 1:CAS:528:DC%2BC38XhvVOisrs%3D&md5=948294e694de48ebb3de0d4a489f5db6CAS |

[56]  M. Zavrel, D. Bross, M. Funke, J. Buchs, A. C. Spiess, Bioresour. Technol. 2009, 100, 2580.
         | CrossRef | 1:CAS:528:DC%2BD1MXit1aiu7c%3D&md5=54bcb9ade0ac0f06a9058a1e1ff145a0CAS |

[57]  J. D. Holbrey, W. M. Reichert, M. Nieuwenhuyzen, O. Sheppard, C. Hardacre, R. D. Rogers, Chem. Commun. 2003, 476.
         | CrossRef | 1:CAS:528:DC%2BD3sXhtVOns7Y%3D&md5=9b5b48d981ccaf941cf807bf0f510b47CAS |

[58]  H. Lateef, S. Grimes, P. Kewcharoenwong, B. Feinberg, J. Chem. Technol. Biot. 2009, 84, 1818.
         | CrossRef | 1:CAS:528:DC%2BD1MXhtlyqsLvJ&md5=dd84e27f7a85c6e6ac3336d6ee0306f6CAS |

[59]  S. Q. Han, J. L. Li, S. D. Zhu, R. Chen, Y. X. Wu, X. Y. Zhang, Z. N. Yu, Bioresources 2009, 4, 825.
         | 1:CAS:528:DC%2BD1MXotVyrtrs%3D&md5=bdfb90422cb456d3b4de42cf75142eecCAS |

[60]  C. Froschauer, M. Hummel, G. Laus, H. Schottenberger, H. Sixta, H. K. Weber, G. Zuckerstatter, Biomacromolecules 2012, 13, 1973.
         | CrossRef | 1:CAS:528:DC%2BC38XntFShur0%3D&md5=e20a24dde74a2a9c68169ff677a7d74eCAS |

[61]  O. A. El Seoud, A. Koschella, L. C. Fidale, S. Dorn, T. Heinze, Biomacromolecules 2007, 8, 2629.
         | CrossRef | 1:CAS:528:DC%2BD2sXovFCltLo%3D&md5=f2b5afafd5c7b75fed1467342da59789CAS |

[62]  A. Brandt, M. J. Ray, T. Q. To, D. J. Leak, R. J. Murphy, T. Welton, Green Chem. 2011, 13, 2489.
         | CrossRef | 1:CAS:528:DC%2BC3MXhtV2hsrzO&md5=48d4bf3b62d855e1675134d516b8974fCAS |

[63]  J. G. Lynam, R. M. Toufiq, V. R. Vasquez, C. J. Coronella, Bioresour. Technol. 2012, 114, 629.
         | CrossRef | 1:CAS:528:DC%2BC38Xms1antL8%3D&md5=d86cdca426f8f51305d67e25c0bfb7e1CAS |

[64]  C. Sievers, M. B. Valenzuela-Olarte, T. Marzialetti, I. Musin, P. K. Agrawal, C. W. Jones, Ind. Eng. Chem. Res. 2009, 48, 1277.
         | CrossRef | 1:CAS:528:DC%2BD1MXhsFCiuw%3D%3D&md5=2cba7f6096da334fd40176e75ff01758CAS |

[65]  C. Li, Q. Wang, Z. K. Zhao, Green Chem. 2008, 10, 177.
         | CrossRef | 1:CAS:528:DC%2BD1cXhsVSis70%3D&md5=75552354815e58e770a500463ca1be6cCAS |

[66]  J. B. Binder, R. T. Raines, Proc. Natl. Acad. Sci. USA 2010, 107, 4516.
         | CrossRef | 1:CAS:528:DC%2BC3cXjs1emtb4%3D&md5=4c602646b7b1c2d41d976a73ec995037CAS |

[67]  B. Li, I. Filpponen, D. S. Argyropoulos, Ind. Eng. Chem. Res. 2010, 49, 3126.
         | CrossRef | 1:CAS:528:DC%2BC3cXislKit7Y%3D&md5=86e71cc7aa9ed26c20e861a2130029a2CAS |

[68]  H. Yu, J. Hu, J. Fan, J. Chang, Ind. Eng. Chem. Res. 2012, 51, 3452.
         | CrossRef | 1:CAS:528:DC%2BC38XpvVOqtg%3D%3D&md5=7adfb4b1c7dced311518ccc712530076CAS |

[69]  W. Y. Li, N. Sun, B. Stoner, X. Y. Jiang, X. M. Lu, R. D. Rogers, Green Chem. 2011, 13, 2038.
         | CrossRef | 1:CAS:528:DC%2BC3MXpslGhtrc%3D&md5=8365d53e970e03f67ae41ef569f0e8fbCAS |

[70]  D. Diedericks, E. van Rensburg, M. D. Garcia-Aparicio, J. F. Gorgens, Biotechnol. Progr. 2012, 28, 76.
         | CrossRef | 1:CAS:528:DC%2BC38Xis1Ogsrs%3D&md5=103cdea2e847380b6277cb706e63c8daCAS |

[71]  A. Brandt, J. K. Erickson, J. P. Hallett, R. J. Murphy, A. Potthast, M. J. Ray, T. Rosenau, M. Schrems, T. Welton, Green Chem. 2012, 14, 1079.
         | CrossRef | 1:CAS:528:DC%2BC38XksVKrsr0%3D&md5=68a25f139784a5756b50552aeb174b4fCAS |

[72]  Khudyakov  J. I.D’haeseleer  P.Borglin  S. E.DeAngelis  K. M.Woo  H.Lindquist  E. A.Hazen  T. C.Simmons  B. A.Thelen  M. P. Proc. Natl. Acad. Sci. USA 2012 . 10.1073/PNAS.1112750109

[73]  E. Reichert, R. Wintringer, D. A. Volmer, R. Hempelmann, Phys. Chem. Chem. Phys. 2012, 14, 5214.
         | CrossRef | 1:CAS:528:DC%2BC38Xkt1CmtLw%3D&md5=35b2bafe1f7147de07c0c9b1e546e5abCAS |

[74]  S. Y. Jia, B. J. Cox, X. W. Guo, Z. C. Zhang, J. G. Ekerdt, Ind. Eng. Chem. Res. 2011, 50, 849.
         | CrossRef | 1:CAS:528:DC%2BC3cXhsFKmtrrE&md5=23a6abf33c4b2228ebeb57be6628d173CAS |

[75]  S. Kubo, K. Hashida, T. Yamada, S. Hishiyama, K. Magara, M. Kishino, H. Ohno, S. Hosoya, J. Wood Chem. Technol. 2008, 28, 84.
         | CrossRef | 1:CAS:528:DC%2BD1cXnsVSmsb0%3D&md5=9951d655576e0b136929c67584f457c0CAS |

[76]  J. Zakzeski, P. C. A. Bruijnincx, B. M. Weckhuysen, Green Chem. 2011, 13, 671.
         | CrossRef | 1:CAS:528:DC%2BC3MXivVGisb8%3D&md5=1bdbdd2fe71bb97b47da2ad694048b7eCAS |

[77]  K. Stärk, N. Taccardi, A. Bosmann, P. Wasserscheid, ChemSusChem 2010, 3, 719.
         | CrossRef |

[78]  C. Zhao, H. Z. Wang, N. Yan, C. X. Xiao, X. D. Mu, P. J. Dyson, Y. Kou, J. Catal. 2007, 250, 33.
         | CrossRef | 1:CAS:528:DC%2BD2sXotl2qsb0%3D&md5=4408736cf0f4710bdcab5f7dc3a66c84CAS |

[79]  X. D. Mu, J. Q. Meng, Z. C. Li, Y. Kou, J. Am. Chem. Soc. 2005, 127, 9694.
         | CrossRef | 1:CAS:528:DC%2BD2MXltVylsr0%3D&md5=176586466605616a33d13012693ce111CAS |

[80]  N. Yan, Y. A. Yuan, R. Dykeman, Y. A. Kou, P. J. Dyson, Angew. Chem. Int. Ed. 2010, 49, 5549.
         | CrossRef | 1:CAS:528:DC%2BC3cXps1ChtLs%3D&md5=7b66098270a876e82b92fbc5bc64b953CAS |

[81]  A. C. Chen, E. I. Rogers, R. G. Compton, Electroanal. 2010, 22, 1037.
         | CrossRef | 1:CAS:528:DC%2BC3cXlvFWnsLk%3D&md5=c87000134049e3be5ae90a67f81dd0b2CAS |

[82]  A. M. O’Mahony, D. S. Silvester, L. Aldous, C. Hardacre, R. G. Compton, J. Chem. Eng. Data 2008, 53, 2884.
         | CrossRef | 1:CAS:528:DC%2BD1cXhtlCiu7vN&md5=e13b27b0adf2cd2afe2f84d7a84390d5CAS |

[83]  The California Energy Commission, Energy Almanac – Estimated 2012 Gasoline Price Breakdown & Margins Details 2012. Available at http://energyalmanac.ca.gov/gasoline/margins/index.php [Verified 7 July 2012]



Rent Article (via Deepdyve) Export Citation Cited By (43)