Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Triazolium-Containing Metal–Organic Frameworks: Control of Catenation in 2D Copper(ii) Paddlewheel Structures

Alexandre Burgun A , Christian J. Doonan A and Christopher J. Sumby A B
+ Author Affiliations
- Author Affiliations

A School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, Australia.

B Corresponding author. Email: christopher.sumby@adelaide.edu.au

Australian Journal of Chemistry 66(4) 409-418 https://doi.org/10.1071/CH12462
Submitted: 8 October 2012  Accepted: 6 November 2012   Published: 14 December 2012

Abstract

One approach to exploit metal–organic frameworks (MOFs) as heterogeneous catalyst platforms requires the development of materials containing groups that can be utilised to anchor a catalytic moiety into the links within the structure. Here we report the synthesis of the first integrated triazolium-containing MOF linker and the first MOFs containing linkers of this type. 1,4-Bis(4-benzoic acid)-1-methyl-1H-1,2,3-triazolium chloride, H2L1Me, was synthesised in three steps by a ‘click’ reaction of methyl 4-ethynylbenzoate with methyl 4-azidobenzoate, methylation using methyl triflate, followed by ester hydrolysis in overall 74 % yield. The equivalent neutral triazole precursor, 1,4-bis(4-benzoic acid)-1H-1,2,3-triazole hydrochloride, H2L1(HCl), was also prepared and a comparison of the chemistry with Zn(NO3)2·6H2O and Cu(NO3)2·3H2O is presented. The results support the use of reaction conditions to control interpenetration and provide additional evidence that the charge on structurally similar ligands can drastically alter the types of structures that are accessible due to the requirements for charge balance in the final product.


References

[1]  (a) S. Kitagawa, R. Kitaura, S.-I. Noro, Angew. Chem. Int. Ed. 2004, 43, 2334.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktFShtLk%3D&md5=4d6e8ebba2bca77ae2961e8f2e309d72CAS |
      (b) G. Ferey, Chem. Soc. Rev. 2008, 37, 191.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) R. Robson, Dalton Trans. 2008, 5113.
         | Crossref | GoogleScholarGoogle Scholar |
         (d) S. R. Batten, S. M. Neville, D. R. Turner, Coordination Polymers: Design, Analysis and Application 2009, p. 471 (Royal Society of Chemistry: Cambridge).

[2]  (a) M. Eddaoudi, J. Kim, N. L. Rosi, D. T. Vodak, J. Wachter, M. O’Keeffe, O. M. Yaghi, Science 2002, 295, 469.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlyrtLjP&md5=8852d22faa86f042cbd8e4ac532b0148CAS |
      (b) H. Deng, C. J. Doonan, H. Furukawa, R. B. Ferreira, J. Towne, C. B. Knobler, B. Wang, O. M. Yaghi, Science 2010, 327, 846.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) N. Stock, S. Biswas, Chem. Rev. 2012, 112, 933.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) A. Corma, H. Garcia, F. X. Llabres, I. Xamena, Chem. Rev. 2010, 110, 4606.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktFers7Y%3D&md5=33d24fa3642016d6ad7e54379258e2eaCAS |
      (b) L. Ma, C. Abney, W. Lin, Chem. Soc. Rev. 2009, 38, 1248.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. U. Czaja, N. Trukhan, U. Müller, Chem. Soc. Rev. 2009, 38, 1284.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T. Hupp, Chem. Soc. Rev. 2009, 38, 1450.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) E. D. Bloch, D. Britt, C. Lee, C. J. Doonan, F. J. Uribe-Romo, H. Furukawa, J. R. Long, O. M. Yaghi, J. Am. Chem. Soc. 2010, 132, 14382.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFygt7bP&md5=9a8747cebded6828c9415314e241016dCAS |
      (b) C. J. Doonan, W. Morris, H. Furukawa, O. M. Yaghi, J. Am. Chem. Soc. 2009, 131, 9492.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) T. Jacobs, R. Clowes, A. I. Cooper, M. J. Hardie, Angew. Chem. Int. Ed. 2012, 51, 5192.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) C. Wang, Z. Xie, K. E. deKrafft, W. Lin, J. Am. Chem. Soc. 2011, 133, 13445.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvVWltrk%3D&md5=eabf477686501536997373c34f09ea38CAS |
      (b) P. V. Dau, M. Kim, S. J. Garibay, F. H. L. Muench, C. E. Moore, S. M. Cohen, Inorg. Chem. 2012, 51, 5671.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) P. V. Dau, M. Kim, S. M. Cohen, Chem. Sci. 2013, Advance Article.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  A. J. Nuñez, L. N. Shear, N. Dahal, I. A. Ibarra, J. Yoon, Y. K. Hwang, J.-S. Chang, S. M. Humphrey, Chem. Commun. 2011, 47, 11855.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  (a) J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, K. Kim, Nature 2000, 404, 982.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtFyns7k%3D&md5=49fa83281737c37b6b6f426dff7545bcCAS |
      (b) B. Chen, L. Wang, Y. Xiao, F. R. Fronczek, M. Xue, Y. Cui, G. Qian, Angew. Chem. Int. Ed. 2009, 48, 500.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) X.-P. Zhou, Z. Xu, M. Zeller, A. D. Hunter, Chem. Commun. 2009, 5439.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) C.-D. Wu, A. Hu, L. Zhang, W. Lin, J. Am. Chem. Soc. 2005, 127, 8940.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkslGju7k%3D&md5=2449dccdbd58f006dbd1154063fd5725CAS |
      (b) K. L. Mulfort, O. K. Farha, C. L. Stern, A. A. Sarjent, J. T. Hupp, J. Am. Chem. Soc. 2009, 131, 3866.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) T. Devic, P. Horcajada, C. Serre, F. Salles, G. Maurin, B. Moulin, D. Heurtaux, G. Clet, A. Vimont, J.-M. Greneche, B. Le Ouay, F. Moreau, E. Magnier, Y. Filinchuk, J. Marrot, J.-C. Lavalley, M. Daturi, G. Ferey, J. Am. Chem. Soc. 2010, 132, 1127.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) K. S. Jeong, Y. B. Go, S. M. Shin, S. J. Lee, J. Kim, O. M. Yaghi, N. Jeong, Chem. Sci. 2011, 2, 877.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) D. Rankine, A. Avellaneda, M. R. Hill, C. J. Doonan, C. J. Sumby, Chem. Commun. 2012, 48, 10328.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) Z. Fei, T. D. Geldbach, D. Zhao, R. Scopelliti, P. J. Dyson, Inorg. Chem. 2005, 44, 5200.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltlGnsL0%3D&md5=924783db3a99a4fa605648e21d7758f3CAS |
      (b) Z. Fei, T. D. Geldbach, D. Zhao, R. Scopelliti, P. J. Dyson, Inorg. Chem. 2006, 45, 6331.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L. Han, S. Zhang, Y. Wang, X. Yan, X. Lu, Inorg. Chem. 2009, 48, 786.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) R. S. Crees, M. L. Cole, L. R. Hanton, C. J. Sumby, Inorg. Chem. 2010, 49, 1712.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) J. Chun, I. G. Jung, H. J. Kim, M. Park, M. S. Lah, S. U. Son, Inorg. Chem. 2009, 48, 6353.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) J. Chun, H. S. Lee, I. G. Jung, S. W. Lee, H. J. Kim, S. U. Son, Organometallics 2010, 29, 1518.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) J. Y. Lee, J. Roberts, O. K. Farha, J. T. Hupp, K. A. Scheidt, Inorg. Chem. 2009, 48, 9971.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) G.-Q. Kong, X. Xu, C. Zou, C.-D. Wu, Chem. Commun. 2011, 47, 11005.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  J. M. Roberts, O. K. Farha, A. A. Sarjeant, J. T. Hupp, K. A. Scheidt, Cryst. Growth Des. 2011, 11, 4747.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Kktr%2FI&md5=5cd083480cd94af30f8f9a728892dd69CAS |

[11]  K. Oisaki, Q. Li, H. Furukawa, A. U. Czaja, O. M. Yaghi, J. Am. Chem. Soc. 2010, 132, 9262.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFyhtL0%3D&md5=22d8a9f4d252b4ff9a4df1933ddb9b3eCAS |

[12]  (a) J. R. Struble, J. W. Bode, Tetrahedron 2008, 64, 6961.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1OltLg%3D&md5=eecead829c18b06759c296e767fd99beCAS |
      (b) J. R. Struble, J. Kaeobamrung, J. W. Bode, Org. Lett. 2008, 10, 957.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  (a) H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed. 2001, 40, 2004.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksVOis78%3D&md5=af962a1dfdc14748785758477eb28f57CAS |
      (b) J. E. Moses, A. D. Moorhouse, Chem. Soc. Rev. 2007, 36, 1249.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. G. Finn, V. V. Fokin, Chem. Soc. Rev. 2010, 39, 1231.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  (a) J. D. Crowley, A.-L. Lee, K. J. Kilpin, Aust. J. Chem. 2011, 64, 1118.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVegt7nK&md5=eab09d7d53c0ac75f4b651b96b2a17f4CAS |
         (b) J. D. Crowley, D. A. McMorran, in Click Triazoles: Topics in Heterocyclic Chemistry (Ed. J. Košmrlj) 2012, Vol. 28, pp. 31–84 (Springer: Berlin).
      (c) D. Schweinfurth, N. Deibel, F. Weisser, B. Sarkar, Nachr. Chem. 2011, 59, 937.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) H. Struthers, T. L. Mindt, R. Schibli, Dalton Trans. 2010, 39, 675.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) S. O. Scott, E. L. Gavey, S. J. Lind, K. C. Gordon, J. D. Crowley, Dalton Trans. 2011, 40, 12117.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) K. J. Kilpin, U. S. D. Paul, A.-L. Lee, J. D. Crowley, Chem. Commun. 2011, 47, 328.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) K. J. Kilpin, E. L. Gavey, C. J. McAdam, C. B. Anderson, S. J. Lind, C. C. Keep, K. C. Gordon, J. D. Crowley, Inorg. Chem. 2011, 50, 6334.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2596.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xls1Ohsr4%3D&md5=82dc97e2fc246725b65dca4afe587274CAS |

[16]  A. R. Katritzky, Y. Zhang, S. K. Singh, Heterocycles 2003, 60, 1225.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtlyrt74%3D&md5=28d30e79a4db1a5cf3f3161353b58ae9CAS |

[17]  G. Guisado-Barrios, J. Bouffard, B. Donnadieu, G. Bertrand, Organometallics 2011, 30, 6017.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1ylurnJ&md5=6a159e2b98ffba7bd53192c8bcaca630CAS |

[18]  (a) Y. Hua, A. H. Flood, Chem. Soc. Rev. 2010, 39, 1262.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjs1Ggtbw%3D&md5=fe0a1acab219a962e73aa8ceb8c13b39CAS |
      (b) A. D. Pehere, C. J. Sumby, A. D. Abell, Org. Biomol. Chem. 2012, Advance Article.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  (a) J. Zhang, L. Wojtas, R. W. Larsen, M. Eddaoudi, M. J. Zaworotko, J. Am. Chem. Soc. 2009, 131, 17040.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlKrsb%2FF&md5=0f0f0e8a9e7422cf76e38c835867fdcaCAS |
      (b) J. I. Feldblyum, A. G. Wong-Foy, A. J. Matzger, Chem. Commun. 2012, 48, 9828.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  (a) M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O’Keeffe, O. M. Yaghi, Acc. Chem. Res. 2001, 34, 319.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtFymsL0%3D&md5=279d664ee05a8886ccc5e61150f7d504CAS |
      (b) D. J. Tranchemontagne, J. L. Mendoza-Cortés, M. O’Keeffe, O. M. Yaghi, Chem. Soc. Rev. 2009, 38, 1257.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  A. L. Spek, Acta Crystallogr. 1990, A46, C34.

[22]  W. B. Austin, N. Bilow, W. J. Kelleghan, K. S. Y. Lau, J. Org. Chem. 1981, 46, 2280.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXktVKlt7o%3D&md5=ba6fabafa9e2d0e97a0d427a12125d58CAS |

[23]  M. Tanno, S. Sueyoshi, S. Kamiya, Chem. Pharm. Bull. (Tokyo) 1982, 30, 3125.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXht1GmtL8%3D&md5=d4d262025997ef8a3e24ab5b17fd6590CAS |

[24]  T. M. McPhillips, S. E. McPhillips, H. J. Chiu, A. E. Cohen, A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter, R. P. Phizackerley, S. M. Soltis, P. Kuhn, J. Synchrotron Radiat. 2002, 9, 401.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xotleluro%3D&md5=380f70c3cee5e196922dc18c1fbabce4CAS |

[25]  G. M. Sheldrick, Acta Crystallogr. 1990, A46, 467.
         | 1:CAS:528:DyaK3cXksFSgsrc%3D&md5=09b52b130bb806d940d5e8080af07d30CAS |

[26]  G. M. Sheldrick, SHELXL-97 1997 (University of Göttingen: Göttingen).

[27]  L. J. Barbour, J. Supramol. Chem. 2001, 1, 189.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlOlsb8%3D&md5=b8ca8c15e12e7249c9068cf6390b143aCAS |

[28]  Persistence of Vision Raytracer Pty Ltd, POV-Ray, Williamstown, Australia, 20032008.

[29]  G. M. Sheldrick, CIFTAB 1997 (University of Göttingen: Göttingen).

[30]  P. Gilli, L. Pretto, V. Bertolasi, G. Gilli, Acc. Chem. Res. 2009, 42, 33.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1GjtrzO&md5=af993bb897a4e04ac4480654e43b7830CAS |