Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Nitrogen benefits of lupins, field pea, and chickpea to wheat production in south-eastern Australia

E. L. Armstrong, D. P. Heenan, J. S. Pate and M. J. Unkovich

Australian Journal of Agricultural Research 48(1) 39 - 48
Published: 1997

Abstract

Nitrogen balances of narrow leaf lupin (Lupinus angustifolius L.), albus lupin (L. albus L.), field pea (Pisum sativum L.), chickpea (Cicer arietinum L.), and barley (Hordeum vulgare L.) sown over a range of dates were examined in 1992 in a rotation study at Wagga Wagga, NSW. Each N budget included assessment of dependence on fixed as opposed to soil N, peak aboveground biomass N, and N removed as grain or returned as unharvested aboveground crop residues. N balances of wheat sown across the plots in 1993 were assessed similarly in terms of biomass and grain yield. Yields, N2 fixation, and crop residue N balances of the legumes were markedly influenced by sowing time, and superior performance of lupins over other species was related to higher biomass production and proportional dependence on N2 fixation, together with a poorer harvest index. Residual N balances in aboveground biomass after harvest of the 1992 crops were significantly correlated with soil mineral N at 1993 sowing and with biomass and grain N yields of the resulting wheat crop. Best mean fixation and grain N yield came from albus lupin. Wheat grain N yields following the 2 lupins were some 20% greater than after fiield pea and chickpea and 3 times greater than after barley. Net soil N balance based solely on aboveground returns of N of legumes in 1992 through to harvest of wheat in 1993 was least for narrow leaf lupin-wheat ( –20 kg N/ha), followed by albus lupin-wheat ( –44), chickpea-wheat ( –74), and field pea-wheat ( –96). Corresponding combined grain N yields (legume+wheat) from the 4 rotations were 269, 361, 178, and 229 kg N/ha, respectively. The barley-wheat rotation yielded a similarly computed soil N deficit of 67 kg/ha. Data are discussed in relation to other studies on legume-based rotations.

Keywords: rotations, N balance, residual N balance, grain legumes, cereals.

http://dx.doi.org/10.1071/A96054

© CSIRO 1997


Export Citation