Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality

Progress in breeding perennial grains

T. S. Cox A B , D. L. Van Tassel A , C. M. Cox A and L. R. DeHaan A
+ Author Affiliations
- Author Affiliations

A The Land Institute, 2440 E. Water Well Rd., Salina, KS 67401, USA.

B Corresponding author. Email:

Crop and Pasture Science 61(7) 513-521
Submitted: 9 July 2009  Accepted: 1 October 2009   Published: 6 July 2010


Annual cereal, legume and oilseed crops remain staples of the global food supply. Because most annual crops have less extensive, shorter-lived root systems than do perennial species, with a correspondingly lower capacity to manage nutrients and water, annual cropping systems tend to suffer higher levels of soil erosion and generate greater water contamination than do perennial systems. In an effort to reduce soil degradation and water contamination simultaneously – something that neither no-till nor organic cropping alone can accomplish – researchers in the United States, Australia and other countries have begun breeding perennial counterparts of annual grain and legume crops. Initial cycles of hybridization, propagation and selection in wheat, wheatgrasses, sorghum, sunflower and Illinois bundleflower have produced perennial progenies with phenotypes intermediate between wild and cultivated species, along with improved grain production. Further breeding cycles will be required to develop agronomically adapted perennial crops with high grain yields.

Additional keywords: plant breeding, sorghum, sunflower, sustainable agriculture, wheat.


Banks PM, Xu SJ, Wang RRC, Larkin PJ (1993) Varying chromosome composition of 56-chromosome wheat × Thinopyrum intermedium partial amphiploids. Genome 36, 207–215.
CrossRef | CAS | PubMed |

Bell LW, Byrne (nee Flugge) F, Ewing MA, Wade LJ (2008) A preliminary whole-farm economic analysis of perennial wheat in an Australian dryland farming system. Agricultural Systems 96, 166–174.
CrossRef |

Chiras DD , Reganold JP (2004) ‘Natural resource conservation: management for a sustainable future.’ 9th edn (Prentice Hall: Upper Saddle River, NJ)

Choo TM, Reinbergs E (1982) Analyses of skewness and kurtosis for detecting gene interaction in a doubled haploid population. Crop Science 22, 231–235.

Cox TS, Bender M, Picone C, Van Tassel DL, Holland JB, Brummer CE, Zoeller BE, Paterson AH, Jackson W (2002) Breeding perennial grain crops. Critical Reviews in Plant Sciences 21, 59–91.
CrossRef |

Cox TS, Glover JG, Van Tassel DL, Cox CM, DeHaan LR (2006) Prospects for developing perennial grain crops. Bioscience 56, 649–659.
CrossRef |

DeHaan LR, Ehlke NJ, Sheaffer CC, Muehlbauer GJ, Wyse DL (2003) Illinois bundleflower genetic diversity determined by AFLP analysis. Crop Science 43, 402–408.

DeHaan LR, Van Tassel DL, Cox TS (2005) Perennial grain crops: a synthesis of ecology and plant breeding. Renewable Agriculture and Food Systems 20, 5–14.
CrossRef |

Gantzer CJ, Anderson SH, Thompson AL, Brown JR (1990) Estimating soil erosion after 100 years of cropping on Sanborn Field. Journal of Soil and Water Conservation 45, 641–644.

Gill BS, Friebe B, Raupp WJ, Wilson DL, Cox TS, Sears RG, Brown-Guedira GL, Fritz AK (2006) Wheat Genetics Resource Center: the first 25 years. Advances in Agronomy 85, 73–136.
CrossRef |

Glover JD, Cox CM, Reganold JP (2007) Future of farming: a return to roots? Scientific American 297(2), 66–73.
CrossRef |

Hadley HH (1958) Chromosome numbers, fertility, and rhizome expression of hybrids between grain sorghum and Johnson grass. Agronomy Journal 50, 278–282.

Hu FY, Tao DY, Sacks E, Fu BY, Xu P, Li J, Yang Y, McNally K, Khush GS, Paterson AH, Li Z-K (2003) Convergent evolution of perenniality in rice and sorghum. Proceedings of the National Academy of Sciences of the United States of America 100, 4050–4054.
CrossRef | CAS | PubMed |

Kulakow PA (1999) Variation in Illinois bundleflower (Desmanthus illinoensis (Michaux) MacMillan): a potential perennial grain legume. Euphytica 110, 7–20.
CrossRef |

Paterson AH, Schertz KF, Lin YR, Liu SC, Chang YL (1995) The weediness of wild plants: molecular analysis of genes influencing dispersal and persistence of johnsongrass, Sorghum halepense (L.) Pers. Proceedings of the National Academy of Sciences of the United States of America 92, 6127–6131.
CrossRef | CAS | PubMed |

Piper JK, Kulakow PA (1994) Seed yield and biomass allocation in Sorghum bicolor and F1 and backcross generations of S. bicolor × S. halepense hybrids. Canadian Journal of Botany 72, 468–474.
CrossRef |

Pooni HS, Jinks JL, Cornish MA (1977) The causes and consequences of non-normality in predicting the properties of recombinant inbred lines. Heredity 38, 329–338.
CrossRef |

Randall GW, Mulla D (2001) Nitrate nitrogen in surface waters as influenced by climatic conditions and agricultural practices. Journal of Environmental Quality 30, 337–344.
CAS | CrossRef | PubMed |

Sacks EJ, Roxas JP, Sta. Cruz MT (2003) Developing perennial upland rice I: Field performance of Oryza sativa/O. rufipogon F1, F4 and BC1F4 progeny. Crop Science 43, 120–128.

Scheinost P, Lammer D, Cai X, Murray TD, Jones SS (2001) Perennial wheat: a sustainable cropping system for the Pacific Northwest. American Journal of Alternative Agriculture 16, 147–151.
CrossRef |

Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292, 281–284.
CrossRef | CAS | PubMed |

Wagoner P (1995) Intermediate wheatgrass (Thinopyrum intermedium): development of a perennial grain crop. In ‘Cereals and pseudocereals’. (Ed. JT Williams) pp. 248–259. (Chapman and Hall: London)

Ward PR, Micin SF, Dunin FX (2006) Using soil, climate, and agronomy to predict soil water use by lucerne compared with soil water use by annual crops or pastures. Australian Journal of Agricultural Research 57, 347–354.
CrossRef |

Zhang P, Friebe B, Lukaszewski AJ, Gill BS (2001) The centromere structure in Robertsonian wheat-rye translocation chromosomes indicates that centric breakage-fusion can occur at different positions within the primary constriction. Chromosoma 110, 335–344.
CrossRef | CAS | PubMed |

Rent Article (via Deepdyve) Export Citation Cited By (29)