Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT (Open Access)

Polyfluoroalkyl compounds in the Canadian Arctic atmosphere

Lutz Ahrens A C , Mahiba Shoeib A C , Sabino Del Vento B , Garry Codling B and Crispin Halsall B

A Science and Technology Branch, Environment Canada, 4905 Dufferin Street, Toronto, ON, M3H 5T4, Canada.

B Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.

C Corresponding author. Email: lutz.ahrens@ec.gc.ca; mahiba.shoeib@ec.gc.ca

Environmental Chemistry 8(4) 399-406 http://dx.doi.org/10.1071/EN10131
Submitted: 1 December 2010  Accepted: 1 July 2011   Published: 19 August 2011

Environmental context. Perfluoroalkyl compounds are of rising environmental concern because of their ubiquitous distribution in remote regions like the Arctic. The present study quantifies these contaminants in the gas and particle phases of the Canadian Arctic atmosphere. The results demonstrate the important role played by gas–particle partitioning in the transport and fate of perfluoroalkyl compounds in the atmosphere.

Abstract. Polyfluoroalkyl compounds (PFCs) were determined in high-volume air samples during a ship cruise onboard the Canadian Coast Guard Ship Amundsen crossing the Labrador Sea, Hudson Bay and the Beaufort Sea of the Canadian Arctic. Five PFC classes (i.e. perfluoroalkyl carboxylates (PFCAs), polyfluoroalkyl sulfonates (PFSAs), fluorotelomer alcohols (FTOHs), fluorinated sulfonamides (FOSAs), and sulfonamidoethanols (FOSEs)) were analysed separately in the gas phase collected on PUF/XAD-2 sandwiches and in the particle phase on glass-fibre filters (GFFs). The method performance of sampling, extraction and instrumental analysis were compared between two research groups. The FTOHs were the dominant PFCs in the gas phase (20–138 pg m–3), followed by the FOSEs (0.4–23 pg m–3) and FOSAs (0.5–4.7 pg m–3). The PFCAs could only be quantified in the particle phase with low levels (<0.04–0.18 pg m–3). In the particle phase, the dominant PFC class was the FOSEs (0.3–8.6 pg m–3). The particle-associated fraction followed the general trend of: FOSEs (~25 %) > FOSAs (~9 %) > FTOHs (~1 %). Significant positive correlation between ∑FOSA concentrations in the gas phase and ambient air temperature indicate that cold Arctic surfaces, such as the sea-ice snowpack and surface seawater could be influencing FOSAs in the atmosphere.


References

[1]  K. Prevedouros, I. T. Cousins, R. C. Buck, S. H. Korzeniowski, Sources, fate and transport of perfluorocarboxylates. Environ. Sci. Technol. 2006, 40, 32.
Sources, fate and transport of perfluorocarboxylates.CrossRef | 1:CAS:528:DC%2BD2MXht1Gru7zK&md5=14e91a9069cf17a00b47907f105e54b6CAS | open url image1

[2]  E. Kissa, Fluorinated Surfactants and Repellents 2001 (Marcel Dekker: New York).

[3]  M. Houde, J. W. Martin, R. J. Letcher, K. R. Solomon, D. C. G. Muir, Biological monitoring of polyfluoroalkyl substances: a review. Environ. Sci. Technol. 2006, 40, 3463.
Biological monitoring of polyfluoroalkyl substances: a review.CrossRef | 1:CAS:528:DC%2BD28XktVers7w%3D&md5=f4882d1064a287c19c118a9ecfaadc61CAS | open url image1

[4]  J. P. Giesy, K. Kannan, Global distribution of perfluorooctane sulfonate in wildlife. Environ. Sci. Technol. 2001, 35, 1339.
Global distribution of perfluorooctane sulfonate in wildlife.CrossRef | 1:CAS:528:DC%2BD3MXhsVGnurg%3D&md5=e5a5453b4d2a3d83f723af878a2c9adbCAS | open url image1

[5]  J. M. Armitage, M. Macleod, I. T. Cousins, Modeling the global fate and transport of perfluorooctanoic acid (PFOA) and perfluorooctanoate (PFO) emitted from direct sources using a multispecies mass balance model. Environ. Sci. Technol. 2009, 43, 1134.
Modeling the global fate and transport of perfluorooctanoic acid (PFOA) and perfluorooctanoate (PFO) emitted from direct sources using a multispecies mass balance model.CrossRef | 1:CAS:528:DC%2BD1MXotlKmtw%3D%3D&md5=4c35bed062ff033d576453394497278dCAS | open url image1

[6]  L. Ahrens, J. L. Barber, Z. Xie, R. Ebinghaus, Longitudinal and latitudinal distribution of perfluoroalkyl compounds in the surface water of the Atlantic Ocean. Environ. Sci. Technol. 2009, 43, 3122.
Longitudinal and latitudinal distribution of perfluoroalkyl compounds in the surface water of the Atlantic Ocean.CrossRef | 1:CAS:528:DC%2BD1MXjvFalsb0%3D&md5=0577ff8869ac9a9ff85c8a3b5d2cc878CAS | open url image1

[7]  J. Armitage, I. T. Cousins, R. C. Buck, K. Prevedouros, M. H. Russell, M. Macleod, S. H. Korzeniowski, Modeling global-scale fate and transport of perfluorooctanoate emitted from direct sources. Environ. Sci. Technol. 2006, 40, 6969.
Modeling global-scale fate and transport of perfluorooctanoate emitted from direct sources.CrossRef | 1:CAS:528:DC%2BD28XhtV2qs7%2FK&md5=69fbd98978a84fd224bc61a80d2900d9CAS | open url image1

[8]  C. J. McMurdo, D. A. Ellis, E. Webster, J. Butler, R. D. Christensen, L. K. Reid, Aerosol enrichment of the surfactant PFO and mediation of the water-air transport of gaseous PFOA. Environ. Sci. Technol. 2008, 42, 3969.
Aerosol enrichment of the surfactant PFO and mediation of the water-air transport of gaseous PFOA.CrossRef | 1:CAS:528:DC%2BD1cXkvFKhsrg%3D&md5=5662bb6cfadb5d342ee5401a03e8351dCAS | open url image1

[9]  E. Webster, D. A. Ellis, Potential role of sea spray generation in the atmospheric transport of perfluorocarboxylic acids. Environ. Toxicol. Chem. 2010, 29, 1703.
Potential role of sea spray generation in the atmospheric transport of perfluorocarboxylic acids.CrossRef | 1:CAS:528:DC%2BC3cXhtlSju7vK&md5=2d6fbbad0de7a6db5ac433ffee308933CAS | open url image1

[10]  A. Jahnke, U. Berger, R. Ebinghaus, C. Temme, Latitudinal gradient of airborne polyfluorinated alkyl substances in the marine atmosphere between Germany and South Africa (53 °N–33 °S). Environ. Sci. Technol. 2007, 41, 3055.
Latitudinal gradient of airborne polyfluorinated alkyl substances in the marine atmosphere between Germany and South Africa (53 °N–33 °S).CrossRef | 1:CAS:528:DC%2BD2sXjslWgsb0%3D&md5=dd81d1257116b93697e928261b85484cCAS | open url image1

[11]  N. L. Stock, V. I. Furdui, D. C. G. Muir, S. A. Mabury, Perfluoroalkyl contaminants in the Canadian Arctic: evidence of atmospheric transport and local contamination. Environ. Sci. Technol. 2007, 41, 3529.
Perfluoroalkyl contaminants in the Canadian Arctic: evidence of atmospheric transport and local contamination.CrossRef | 1:CAS:528:DC%2BD2sXkt1OrsLY%3D&md5=47f6ada56c14e618484ff3141d8aa527CAS | open url image1

[12]  X. Ju, Y. Jin, K. Sasaki, N. Saito, Perfluorinated surfactants in surface, subsurface water and microlayer from Dalian coastal waters in China. Environ. Sci. Technol. 2008, 42, 3538.
Perfluorinated surfactants in surface, subsurface water and microlayer from Dalian coastal waters in China.CrossRef | 1:CAS:528:DC%2BD1cXksFars7s%3D&md5=214985f8d7ceb4138f9a47002f7ec480CAS | open url image1

[13]  D. A. Ellis, J. W. Martin, S. A. Mabury, A. O. De Silva, M. D. Hurley, M. D. Sulbaek Anderson, T. J. Wallington, Degradation of fluorotelomer alcohols: a likely atmospheric source of perfluorinated carboxylic acids. Environ. Sci. Technol. 2004, 38, 3316.
Degradation of fluorotelomer alcohols: a likely atmospheric source of perfluorinated carboxylic acids.CrossRef | 1:CAS:528:DC%2BD2cXjvVShsb0%3D&md5=1a2a8158f069618f177c7efa759abbccCAS | open url image1

[14]  J. W. Martin, D. A. Ellis, S. A. Mabury, M. D. Hurley, T. J. Wallington, Atmospheric chemistry of perfluoroalkanesulfonamides: kinetic and product studies of the OH radical and Cl atom initiated oxidation of n-ethyl perfluorobutanesulfonamide. Environ. Sci. Technol. 2006, 40, 864.
Atmospheric chemistry of perfluoroalkanesulfonamides: kinetic and product studies of the OH radical and Cl atom initiated oxidation of n-ethyl perfluorobutanesulfonamide.CrossRef | 1:CAS:528:DC%2BD2MXhtlekurbM&md5=af7be02670c9dd4f3b823cf408ef1fb9CAS | open url image1

[15]  D. A. Ellis, J. W. Martin, S. A. Mabury, M. D. Hurley, M. D. Sulbaek Anderson, T. J. Wallington, Atmospheric lifetime of fluorotelomer alcohols. Environ. Sci. Technol. 2003, 37, 3816.
Atmospheric lifetime of fluorotelomer alcohols.CrossRef | 1:CAS:528:DC%2BD3sXltlaqt7o%3D&md5=c330276a37dfc8dfb5b8b307b41c2bdfCAS | open url image1

[16]  M. Shoeib, T. Harner, P. Vlahos, Perfluorinated chemicals in the Arctic atmosphere. Environ. Sci. Technol. 2006, 40, 7577.
Perfluorinated chemicals in the Arctic atmosphere.CrossRef | 1:CAS:528:DC%2BD28Xht1SlsrzK&md5=a5e45f2168df38e4815e34d061c1b01aCAS | open url image1

[17]  A. G. Paul, K. C. Jones, A. J. Sweetman, A first global production, emission, and environmental inventory for perfluorooctane sulfonate. Environ. Sci. Technol. 2009, 43, 386.
A first global production, emission, and environmental inventory for perfluorooctane sulfonate.CrossRef | 1:CAS:528:DC%2BD1cXhsVyks7%2FJ&md5=63238d1759e406591a922fb0ed3a709cCAS | open url image1

[18]  F. Wania, A global mass balance analysis of the source of perfluorocarboxylic acids in the Arctic Ocean. Environ. Sci. Technol. 2007, 41, 4529.
A global mass balance analysis of the source of perfluorocarboxylic acids in the Arctic Ocean.CrossRef | 1:CAS:528:DC%2BD2sXlsFenu7k%3D&md5=46fdcb34f607d1fd07086ea7a0a12667CAS | open url image1

[19]  M. Loewen, T. Halldorson, F. Wang, G. Tomy, Fluorotelomer carboxylic acids and PFOS in rainwater from an urban center in Canada. Environ. Sci. Technol. 2005, 39, 2944.
Fluorotelomer carboxylic acids and PFOS in rainwater from an urban center in Canada.CrossRef | 1:CAS:528:DC%2BD2MXitlShsr8%3D&md5=381ff1e6e55f6ce1eb3c6f75dc3b539bCAS | open url image1

[20]  M. Loewen, F. Wania, F. Wang, G. Tomy, Altitudinal transect of atmospheric and aqueous fluorinated organic compounds in western Canada. Environ. Sci. Technol. 2008, 42, 2374.
Altitudinal transect of atmospheric and aqueous fluorinated organic compounds in western Canada.CrossRef | 1:CAS:528:DC%2BD1cXisFWkt7Y%3D&md5=e3751b43c9dca196163df0461fedececCAS | open url image1

[21]  L. Ahrens, N. Marusczak, J. Rubarth, A. Dommergue, R. Nedjai, C. Ferrari, R. Ebinghaus, Distribution of perfluoroalkyl compounds and mercury in fish liver from high-mountain lakes in France originating from atmospheric deposition. Environ. Chem. 2010, 7, 422.
Distribution of perfluoroalkyl compounds and mercury in fish liver from high-mountain lakes in France originating from atmospheric deposition.CrossRef | 1:CAS:528:DC%2BC3cXhsFChsrfF&md5=8c51fe1d823ea2cdc7b40316c40d4942CAS | open url image1

[22]  C. J. Young, V. I. Furdui, J. Franklin, R. M. Koerner, D. C. Muir, S. A. Mabury, Perfluorinated acids in arctic snow: new evidence for atmospheric formation. Environ. Sci. Technol. 2007, 41, 3455.
Perfluorinated acids in arctic snow: new evidence for atmospheric formation.CrossRef | 1:CAS:528:DC%2BD2sXjsVGrsLs%3D&md5=d5bc2c7b7722ba6f1a9e5c0664e43482CAS | open url image1

[23]  C. R. Powley, S. W. George, T. W. Ryan, R. C. Buck, Matrix effect-free analytical methods for determination of perfluorinated carboxylic acids in environmental matrixes. Anal. Chem. 2005, 77, 6353.
Matrix effect-free analytical methods for determination of perfluorinated carboxylic acids in environmental matrixes.CrossRef | 1:CAS:528:DC%2BD2MXps1erurk%3D&md5=a834e44fc7884ac680c45d2e65f0962aCAS | open url image1

[24]  M. Shoeib, P. Vlahos, T. Harner, A. Peters, M. Graustein, J. Narayan, Survey of polyfluorinated chemicals PFCs in the atmosphere over the northeast Atlantic Ocean. Atmos. Environ. 2010, 44, 2887.
Survey of polyfluorinated chemicals PFCs in the atmosphere over the northeast Atlantic Ocean.CrossRef | 1:CAS:528:DC%2BC3cXnvFOisrw%3D&md5=b36ed008b10dc79abe81f7f9cd217d8dCAS | open url image1

[25]  A. Dreyer, M. Shoeib, S. Fiedler, J. L. Barber, T. Harner, K.-W. Schramm, K. C. Jones, R. Ebinghaus, Field intercomparison on the determination of volatile and semivolatile polyfluorinated compounds in air. Environ. Chem. 2010, 7, 350.
Field intercomparison on the determination of volatile and semivolatile polyfluorinated compounds in air.CrossRef | 1:CAS:528:DC%2BC3cXht12jsbzN&md5=e8778d3842778f0f4de93f5abce63276CAS | open url image1

[26]  A. Jahnke, L. Ahrens, R. Ebinghaus, U. Berger, J. L. Barber, C. Temme, An improved method for the analysis of volatile polyfluorinated alkyl substances in environmental air samples. Anal. Bioanal. Chem. 2007, 387, 965.
An improved method for the analysis of volatile polyfluorinated alkyl substances in environmental air samples.CrossRef | 1:CAS:528:DC%2BD2sXht1Wiu7k%3D&md5=a1b9c9e53b507a89dd9bad7754d1e77bCAS | open url image1

[27]  L. A. Barrie, D. Gregor, B. Hargrave, R. Lake, D. Muir, R. Shearer, B. Tracey, T. Bidleman, Arctic contaminants: sources, occurrence and pathways. Sci. Total Environ. 1992, 122, 1.
Arctic contaminants: sources, occurrence and pathways.CrossRef | 1:CAS:528:DyaK38XltlOjtL4%3D&md5=79459846d6b8bccb2b50a6629c42c661CAS | open url image1

[28]  A. Jahnke, L. Ahrens, R. Ebinghaus, C. Temme, Urban versus remote air concentrations of fluorotelomer alcohols and other polyfluorinated alkyl substances in Germany. Environ. Sci. Technol. 2007, 41, 745.
Urban versus remote air concentrations of fluorotelomer alcohols and other polyfluorinated alkyl substances in Germany.CrossRef | 1:CAS:528:DC%2BD28XhtlektLzL&md5=452f5dfdf7ee90cf831c40b6ed543dbbCAS | open url image1

[29]  T. J. Wallington, M. D. Hurley, J. Xia, D. J. Wuebbles, S. Sillman, A. Ito, J. E. Penner, D. A. Ellis, J. Martin, S. A. Mabury, O. J. Nielsen, M. P. Sulbaek Anderson, Formation of C7F15COOH (PFOA) and other perfluorocarboxylic acids during the atmospheric oxidation of 8 : 2 fluorotelomer alcohol. Environ. Sci. Technol. 2006, 40, 924.
Formation of C7F15COOH (PFOA) and other perfluorocarboxylic acids during the atmospheric oxidation of 8 : 2 fluorotelomer alcohol.CrossRef | 1:CAS:528:DC%2BD2MXhtlCgsrjO&md5=09301cbe0528631906d1dea7e4414b19CAS | open url image1

[30]  A. M. Piekarz, T. Primbs, J. A. Field, D. F. Barofsky, S. Simonich, Semivolatile fluorinated organic compounds in Asian and Western US air masses. Environ. Sci. Technol. 2007, 41, 8248.
Semivolatile fluorinated organic compounds in Asian and Western US air masses.CrossRef | 1:CAS:528:DC%2BD2sXhtlSgurzM&md5=f419da1fe5cdabd320438e58538a94dbCAS | open url image1

[31]  Dupont Global PFOA Strategy Update. Presentation to USEPAOPPT, US Environmental Protection Agency Public Docket AR226-1914, Washington, DC, 31 January 2005 (Environmental Protection Agency: Washington, DC).

[32]  T. Wang, Y. Wang, C. Liao, G. Jiang, Perspectives on the inclusion of perfluorooctane sulfonate into the Stockholm Convention on persistent organic pollutants. Environ. Sci. Technol. 2009, 43, 5171.
Perspectives on the inclusion of perfluorooctane sulfonate into the Stockholm Convention on persistent organic pollutants.CrossRef | 1:CAS:528:DC%2BD1MXmvVKrur8%3D&md5=b119578caa6fe003523fc7d706c1fe79CAS | open url image1

[33]  J. L. Barber, U. Berger, C. Chaemfa, S. Huber, A. Jahnke, C. Temme, K. C. Jones, Analysis of per- and polyfluorinated alkyl substances in air samples from Northwest Europe. J. Environ. Monit. 2007, 9, 530.
Analysis of per- and polyfluorinated alkyl substances in air samples from Northwest Europe.CrossRef | 1:CAS:528:DC%2BD2sXmtFemsrw%3D&md5=0dbdbbfb7b08c8b77cf9717ca9a1dc38CAS | open url image1

[34]  N. L. Stock, D. A. Ellis, L. Deleebeeck, D. C. G. Muir, S. A. Mabury, Vapor pressures of the fluorinated telomer alcohols – limitations of estimation methods. Environ. Sci. Technol. 2004, 38, 1693.
Vapor pressures of the fluorinated telomer alcohols – limitations of estimation methods.CrossRef | 1:CAS:528:DC%2BD2cXptVKnsQ%3D%3D&md5=37ac97cb18d6dce81b1c6d57354daa05CAS | open url image1

[35]  H. P. H. Arp, K. U. Goss, Irreversible sorption of trace concentrations of perfluorocarboxylic acids to fiber filters used for air sampling. Atmos. Environ. 2008, 42, 6869.
Irreversible sorption of trace concentrations of perfluorocarboxylic acids to fiber filters used for air sampling.CrossRef | 1:CAS:528:DC%2BD1cXhtFSqsbjL&md5=80d2de80b9fd006fd37f630c37b68151CAS | open url image1

[36]  R. W. Macdonald, L. A. Barrie, T. F. Bidleman, M. L. Diamond, D. J. Gregor, R. G. Semkin, W. M. J. Strachan, Y. F. Li, F. Wania, M. Alaee, L. B. Alexeeva, S. M. Backus, R. Bailey, J. M. Bewers, C. Gobeil, C. J. Halsall, T. Harner, J. T. Hoff, L. M. M. Jantunen, W. L. Lockhart, D. Mackay, D. C. G. Muir, J. Pudykiewicz, K. J. Reimer, J. N. Smith, G. A. Stern, W. H. Schroeder, R. Wagemann, M. B. Yunker, Contaminants in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and pathways. Sci. Total Environ. 2000, 254, 93.
Contaminants in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and pathways.CrossRef | 1:CAS:528:DC%2BD3cXjs1Wju7w%3D&md5=a1b4fbfdeea9c665cdefc1f385f2a7a0CAS | open url image1


Full Text PDF (434.9 KB) Export Citation