Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

The symbiotic mites of some Appalachian Xystodesmidae (Diplopoda : Polydesmida) and the complete mitochondrial genome sequence of the mite Stylochyrus rarior (Berlese) (Acari : Mesostigmata : Ologamasidae)

Lynn Swafford A and Jason E. Bond A B
+ Author Affiliations
- Author Affiliations

A Department of Biology, Howell Science Complex N211, East Carolina University, Greenville, North Carolina 27858, USA.

B Corresponding author. Email: bondja@ecu.edu

Invertebrate Systematics 23(5) 445-451 https://doi.org/10.1071/IS09036
Submitted: 12 August 2009  Accepted: 2 October 2009   Published: 16 December 2009

Abstract

Millipedes of the family Xystodesmidae (Polydesmida) are often host to several symbiotic mite species, but very little work has been done to identify these acarines or to understand their relationship to the millipedes. In an attempt to better understand these associations, mites found on xystodesmid millipedes, a group for which a species phylogeny has been proposed, were collected in the Appalachian Mountains of Kentucky, Virginia, Tennessee and North Carolina. Mites in the genera Stylochyrus Canestrini & Canestrini, 1882 (Mesostigmata: Ologamasidae) and Schwiebea Oudemans, 1916 (Sarcoptiformes: Acaridae) were prevalent among millipedes in the genera Apheloria Chamberlin, 1921, Appalachioria Marek & Bond, 2006, Boraria Chamberlin, 1943, Brachoria Chamberlin, 1939, Dixioria Chamberlin, 1947, Nannaria Chamberlin, 1918, Pleuroloma Rafinesque, 1820, Prionogonus Shelley, 1982, Rudiloria Causey, 1955 and Sigmoria Chamberlin, 1939. Of the mite taxa collected, the species Stylochyrus rarior (Berlese, 1916) was found on the greatest number of sampled millipede taxa. To enhance future coevolutionary studies of xystodesmid millipedes and their mite symbionts, the complete mitochondrial genome of S. rarior associated with the millipede genus Apheloria (Polydesmida: Xystodesmidae) was sequenced. The genome is 14 899 nucleotides in length, has all the typical genes of an arthropod mitochondrion, differs in gene arrangement from that of the ancestral arthropod, and has a gene order that is unique among mites and ticks. The major difference in S. rarior is the placement of the protein-coding gene nad1, which is positioned between the rRNA gene 12S and the protein-coding gene nad2 (tRNA genes and non-coding regions excluded). There are also two non-coding control regions within this mitochondrial genome.


Acknowledgements

We would like to thank Hans Klompen and Greg Spicer for assistance with mounting and identifying mite specimens and aiding in molecular protocols; Paul Marek for help collecting and identifying millipede specimens; Amy Stockman, Matt Walker and Chad Spruill for assistance with molecular protocols; Michael Brewer for assistance with field and laboratory work; and Kenny Bader for help collecting specimens. This project was supported by National Science Foundation PEET Grant DEB-0529715 to P. Sierwald, J. Bond and W. Shear.


References


Berlese A. (1916) Centuria terza di Acari nuovi. Redia 12, 289–338. [Verified November 2009]

Canestrini G., Canestrini R. (1882) I Gamasi Italiani. Atti della Societa Veneto-Trentina di Scienze Naturali 8, 31–82. open url image1

Evans J. D., Lopez D. L. (2002) Complete mitochondrial DNA sequence of the important honey bee pest, Varroa destructor (Acari: Varroidae). Experimental & Applied Acarology 27, 69–78.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Fahrein K., Talarico G., Braband A., Podsiadlowski L. (2007) The complete mitochondrial genome of Pseudocellus pearsei (Chelicerata: Ricinulei) and a comparison of mitochondrial gene rearrangements in Arachnida. BMC Genomics 8, 386.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Farish D. J., Axtell R. C. (1971) Phoresy redefined and examined in Macrocheles muscaedomesticae (Acarina: Macrochelidae). Acarologia 13, 16–29. open url image1

Gerdeman B. S., Klompen H., Tanigoshi L. (2000) Insights into the biology of a mite–millipede association. Fragmenta Faunistica 43, 223–227. open url image1

Hunter P. E., Rosario R. M. T. (1988) Associations of Mesostigmata with other arthropods. Annual Review of Entomology 33, 393–417.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hwang U. W., Park C. J., Yong T. S., Kim W. (2001) One-step PCR amplification of complete arthropod mitochondrial genomes. Molecular Phylogenetics and Evolution 19(3), 345–352.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Jeyaprakash A., Hoy M. A. (2007) The mitochondrial genome of the predatory mite Metaseiulus occidentalis (Arthropoda: Chelicerata: Acari: Phytoseiidae) is unexpectedly large and contains several novel features. Gene 391, 264–274.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Kethley J. (1983) The deutonymph of Epiphis rarior Berlese, 1916 (Epiphidinae n. subfam., Rhodocaridae, Rhodacaroidea). Canadian Journal of Zoology 61(11), 2598–2611. open url image1

Krantz G. W. , and Walter D. E. (Eds) (2009). ‘A Manual of Acarology.’ 3rd edn. (Texas Tech University Press: Lubbock, TX.)

Lavrov D. V., Boore J. L., Brown W. M. (2000) The complete mitochondrial DNA sequence of the horseshoe crab Limulus polyphemus. Molecular Biology and Evolution 17(5), 813–824.
CAS | PubMed |
open url image1

Lee D. C. (1970) The Rhodacaridae (Acari: Mesostigmata); classification, external morphology and distribution of genera. Records of the South Australian Museum 16(3), 1–219. open url image1

Lowe T. M., Eddy S. R. (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research 25, 955–964.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Marek P. E., Bond J. E. (2006) Phylogenetic systematics of the colorful, cyanide-producing millipedes of Appalachia (Polydesmida, Xystodesmidae, Apheloriini) using a total evidence Bayesian approach. Molecular Phylogenetics and Evolution 41, 704–729.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Navajas M., Le Conte Y., Solignac M., Cros-Arteil S., Cornuet J. M. (2002) The complete sequence of the mitochondrial genome of the honeybee ectoparasite mite Varroa destructor (Acari: Mesostigmata). Molecular Biology and Evolution 19(12), 2113–2317. open url image1

Purrington F. F., Drake C. J. (2008) Phoretic deutonymphs of Schwiebea sp. (Acari: Astigmata: Acaridae) travel in commodious nitid dorsal pits of adult Lagocheirus araneiformis stroheckeri Dillon (Coleoptera: Cerambycidae: Lamiinae) in Florida, USA. Entomological News 119(4), 415–419.
Crossref | GoogleScholarGoogle Scholar | open url image1

Rozen S. , and Skaletsky H. J. (2000). Primer3 on the WWW for general users and for biologist programmers. In ‘Bioinformatics Methods and Protocols: Methods in Molecular Biology’. (Eds S. Krawetz and S. Misener.) pp. 365–386. (Humana Press: Totowa, NJ.)

Van Leeuwen T., Vanholme B., Van Pottelberge S., Van Nieuwenhuyse P., Nauen R., Tirry L., Denholm I. (2008) Mitochondrial heteroplasmy and the evolution of insecticide resistance: non-Mendelian inheritance in action. Proceedings of the National Academy of Sciences of the United States of America 105(16), 5980–5985.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Vitzthum H. G. (1942). Acarina XI, Das System der Acari. In ‘Klassen und Ordnungen des Tierreiches. Vol. 5, Section 4, Book 5’. (Ed. H. G. Bronn.) pp. 751–926. (Akademische Verlagsgesellschaft Becker and Erler Kom. Ges.: Leipzig.)