Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Explosive radiation of the genus Schizopera on a small subterranean island in Western Australia (Copepoda : Harpacticoida): unravelling the cases of cryptic speciation, size differentiation and multiple invasions

Tomislav Karanovic A C and Steven J. B. Cooper B

A Department of Life Sciences, Hanyang University, Seoul 133-791, South Korea.

B Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA 5000; and Australian Centre for Evolutionary Biology and Biodiversity, The University of Adelaide, Adelaide, SA 5005, Australia.

C Corresponding author. Email: tomislav.karanovic@utas.edu.au

Invertebrate Systematics 26(2) 115-192 http://dx.doi.org/10.1071/IS11027
Submitted: 22 June 2011  Accepted: 2 February 2012   Published: 6 August 2012

Abstract

A previously unsurveyed calcrete aquifer in the Yilgarn region of Western Australia revealed an unprecedented diversity of copepods, representing 67% of that previously recorded in this whole region. Especially diverse was the genus Schizopera, with up to four morphospecies per bore and a significant size difference between them. Aims of this study were to: (1) survey the extent of this diversity using morphological and molecular tools; (2) derive a molecular phylogeny based on COI; and (3) investigate whether high diversity is a result of an explosive radiation, repeated colonisations, or both, size differentiation is a result of parallel evolution or different phylogeny, and whether Schizopera is a recent invasion in inland waters. More than 300 samples were analysed and the COI fragment successfully amplified by PCR from 43 specimens. Seven species and one subspecies are described as new, and three possible cryptic species were detected. Reconstructed phylogenies reveal that both explosive radiation and multiple colonisations are responsible for this richness, and that Schizopera is probably a recent invasion in these habitats. No evidence for parallel evolution was found, interspecific size differentiation being a result of different phylogeny. Sister species have parapatric distributions and show niche partitioning in the area of overlap.


References

Adamowicz, S. J., Manu-Marque, S., Hebert, P. D. N., and Purvis, A. (2007). Molecular systematics and patterns of morphological evolution in the Centropagidae (Copepoda: Calanoida) of Argentina. Biological Journal of the Linnean Society. Linnean Society of London 90, 279–292.
Molecular systematics and patterns of morphological evolution in the Centropagidae (Copepoda: Calanoida) of Argentina.CrossRef | open url image1

Allford, A., Cooper, S. J. B., Humphreys, W. F., and Austin, A. D. (2008). Diversity and distribution of groundwater fauna in a limestone aquifer: does sampling alter the story? Invertebrate Systematics 22, 127–138.
Diversity and distribution of groundwater fauna in a limestone aquifer: does sampling alter the story?CrossRef | open url image1

Apostolov, A. (1972). Catalogue des Copépodes harpacticoides marins de la Mer Noire. Zoologischer Anzeiger 188, 202–254. open url image1

Apostolov, A. (1982). Genres et sous-genres nouveaux de la famille Diosaccidae Sars et Cylindropsyllidae Sars, Lang (Copepoda, Harpacticoidea). Acta Zoologica Bulgarica 19, 37–42. open url image1

Arlt, G. (1983). Taxonomy and ecology of some harpacticoids (Crustacea, Copepoda) in the Baltic Sea and Kattegat. Zoologische Jahrbücher. Abteilung für Systematik 110, 45–85. open url image1

Beard, J. S. (1976). ‘Vegetation survey of Western Australia, Murchison.’ (University of Western Australia Press: Perth, WA.)

Berner, D., Grandchamp, A.-C., and Hendry, A. P. (2009). Variable progress toward ecological speciation in parapatry: stickleback across eight lake-stream transitions. Evolution 63, 1740–1753.
Variable progress toward ecological speciation in parapatry: stickleback across eight lake-stream transitions.CrossRef | open url image1

Bickford, D., Lohman, D. J., and Sodhi, N. S. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution 22, 148–155.
Cryptic species as a window on diversity and conservation.CrossRef | open url image1

Bodin, P. (1997). Catalogue of the new marine Harpacticoid Copepods (1997 edn). Documents de travail de l’Institut royal des Sciences naturelles de Belgique 89, 1–304.

Bolnick, D. I., and Fitzpatrick, B. M. (2007). Sympatric speciation: models and empirical evidence. Annual Review of Ecology Evolution and Systematics 38, 459–487.
Sympatric speciation: models and empirical evidence.CrossRef | open url image1

Borutzky, E. W. (1972). Copepoda Harpacticoida from subterranean water of the shore of Issyk-Kul and Southern Kisilkum. Trudy Zoologicheskogo Instituta Leningrad 51, 98–119. open url image1

Boxshall, G. A., and Halsey, S. H. (2004). ‘An Introduction to Copepod Diversity.’ (The Ray Society: London.)

Boxshall, G. A., and Jaume, D. (2000). Making waves: the repeated colonization of freshwater by copepod crustaceans. Advances in Ecological Research 31, 61–79.
Making waves: the repeated colonization of freshwater by copepod crustaceans.CrossRef | open url image1

Bradford, T., Adams, M., Humphreys, W. F., Austin, A. D., and Cooper, S. J. B. (2010). DNA barcoding of stygofauna uncovers cryptic amphipod diversity in a calcrete aquifer in Western Australia’s arid zone. Molecular Ecology Resources 10, 41–50.
DNA barcoding of stygofauna uncovers cryptic amphipod diversity in a calcrete aquifer in Western Australia’s arid zone.CrossRef | 1:CAS:528:DC%2BC3cXht1ans7k%3D&md5=815c439ad21fffe2f6b225ba242c3829CAS | open url image1

Brown, W. L., and Wilson, E. O. (1956). Character displacement. Systematic Zoology 5, 49–64.
Character displacement.CrossRef | open url image1

Byrne, M., Yeates, D. K., Joseph, L., Kearney, M., Bowler, J., Williams, M. A., Cooper, S. J. B., Donnellan, S. C., Keogh, S., Leijs, R., Melville, J., Murphy, D., Porch, N., and Wyrwoll, K.-H. (2008). Birth of a biome: synthesizing environmental and molecular studies of the assembly and maintenance of the Australian arid zone biota. Molecular Ecology 17, 4398–4417.
Birth of a biome: synthesizing environmental and molecular studies of the assembly and maintenance of the Australian arid zone biota.CrossRef | 1:STN:280:DC%2BD1cjhvFGruw%3D%3D&md5=a559457ece5bb9a578fac8bd54f334b9CAS | open url image1

Chappuis, P. A. (1955). Harpacticoides psammiques du Lac Tanganika. Revue de Zoologie et de Botanique Africaines 51, 68–80. open url image1

Chappuis, P.-A., and Rouch, R. (1961). Harpacticides psammiques d’une plage près d’Accra (Ghana). Vie et Milieu 11, 605–614. open url image1

Chappuis, P. A., and Serban, M. (1953). Copépodes de la nappe phréatique de la plage d’Agigea près Constanza. Notes Biospéologiqus 8, 91–102. open url image1

Chertoprud, E. S., and Kornev, P. N. (2005). On the harpacticoid fauna of the Caspian Sea, including the description of Schizopera rybnikovi sp. n. (Copepoda: Harpacticoida: Diosaccidae). Arthropoda Selecta 14, 281–289. open url image1

Cho, J.-L., Humphreys, W. F., and Lee, S.-D. (2006a). Phylogenetic relationships within the genus Atopobathynella Schminke, 1973 (Bathynellacea, Parabathynellidae): with the description of six new species from Western Australia. Invertebrate Systematics 20, 9–41.
Phylogenetic relationships within the genus Atopobathynella Schminke, 1973 (Bathynellacea, Parabathynellidae): with the description of six new species from Western Australia.CrossRef | open url image1

Cho, J.-L., Park, J.-G., and Ranga Reddy, Y. (2006b). Brevisomabathynella gen. nov. with two new species from Western Australia (Bathynellacea, Syncarida): the first definitive evidence of predation in Parabathynellidae. Zootaxa 1247, 25–42. open url image1

Coineau, N. (2000). Adaptations to interstitial groundwater life. In ‘Ecosystems of the World, 30: Subterranean Ecosystems’. (Eds H. Wilkens, D. C. Culver and W. F. Humphreys.) pp. 189–210. (Elsevier: Amsterdam.)

Coineau, N. (2001). Syncarida. In ‘Encyclopedia Biospeologica’. (Eds C. Juberthie and V. Decu.) pp. 863–876. (Societé de Biospéologica and Acdémie Roumanie: Moulis and Bucharest.)

Cooper, S. J. B., Hinze, S., Leys, R., Watts, C. H. S., and Humphreys, W. F. (2002). Islands under the desert: molecular systematics and evolutionary origin of stygobitic water beetles (Coleoptera: Dytiscidae) from central Western Australia. Invertebrate Systematics 16, 589–598.
Islands under the desert: molecular systematics and evolutionary origin of stygobitic water beetles (Coleoptera: Dytiscidae) from central Western Australia.CrossRef | open url image1

Cooper, S. J. B., Bradbury, J. H., Saint, K. M., Leys, R., Austin, A. D., and Humphreys, W. F. (2007). Subterranean archipelago in the Australian arid zone: mitochondrial DNA phylogeography of amphipods from central Western Australia. Molecular Ecology 16, 1533–1544.
Subterranean archipelago in the Australian arid zone: mitochondrial DNA phylogeography of amphipods from central Western Australia.CrossRef | 1:CAS:528:DC%2BD2sXlt1Gmu7w%3D&md5=0f26e3577d2ba19d9bd5f05951c30505CAS | open url image1

Cooper, S. J. B., Saint, K. M., Taiti, S., Austin, A. D., and Humphreys, W. F. (2008). Subterranean archipelago: mitochondrial DNA phylogeography of stygobitic isopods (Oniscidea: Halniscus) from the Yilgarn region of Western Australia. Invertebrate Systematics 22, 195–203.
Subterranean archipelago: mitochondrial DNA phylogeography of stygobitic isopods (Oniscidea: Halniscus) from the Yilgarn region of Western Australia.CrossRef | open url image1

Coull, B. C. (1971). Meiobenthic Harpacticoida (Crustacea, Copepoda) from the North Carolina continental shelf. Cahiers de Biologie Marine 12, 195–237. open url image1

Culver, D., and Pipan, T. (2009). ‘The Biology of Caves and Other Subterranean Habitats.’ (Oxford University Press: Oxford.)

Culver, D. C., Kane, T., and Fong, D. W. (1995). ‘Adaptation and Natural Seection in Caves: The Evolution of Gammarus minus.’ (Harvard University Press: Cambridge.)

Dahms, H. U. (1988). Development of functional adaptation to clasping behaviour in harpacticoid copepods (Copepoda, Harpacticoida). Hydrobiologia 167/168, 505–513.
Development of functional adaptation to clasping behaviour in harpacticoid copepods (Copepoda, Harpacticoida).CrossRef | open url image1

Eberhard, S. M., Halse, S. A., and Humphreys, W. F. (2005). Stygofauna in the Pilbara region, north-west Australia: a review. Journal of the Royal Society of Western Australia 88, 167–176. open url image1

Eberhard, S. M., Halse, S. A., Williams, M. R., Scanlon, M. D., Cocking, J., and Barron, H. J. (2009). Exploring the relationship between sampling efficiency and short-range endemism for groundwater fauna in the Pilbara region, Western Australia. Freshwater Biology 54, 885–901.
Exploring the relationship between sampling efficiency and short-range endemism for groundwater fauna in the Pilbara region, Western Australia.CrossRef | 1:CAS:528:DC%2BD1MXltVOqurg%3D&md5=5399f2bafd6d1e3b2903d9e086f7363eCAS | open url image1

Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.
Confidence limits on phylogenies: an approach using the bootstrap.CrossRef | open url image1

Finston, T. L., Johnson, M. S., Humphreys, W. F., Eberhard, S., and Halse, S. (2007). Cryptic speciation in two widespread subterranean amphipod genera reflects historical drainage patterns in an ancient landscape. Molecular Ecology 16, 355–365.
Cryptic speciation in two widespread subterranean amphipod genera reflects historical drainage patterns in an ancient landscape.CrossRef | 1:CAS:528:DC%2BD2sXks1yqsrw%3D&md5=f99babdcfa9869d7736b9ddf5f25f28dCAS | open url image1

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit 1 from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 1:CAS:528:DyaK2MXjt12gtLs%3D&md5=0a6e1d841a9ef8fafdf936427c59141bCAS | open url image1

Foster, S. A., McKinnin, G. E., Steane, D. A., Potts, B. M., and Vaillancourt, R. E. (2007). Parallel evolution of dwarf ecotypes in the forest tree Eucalyptus globulus. New Phytologist 175, 370–380.
Parallel evolution of dwarf ecotypes in the forest tree Eucalyptus globulus.CrossRef | open url image1

Fryer, G. (1956). New species of cyclopoid and harpacticoid copepods from sandy beaches of Lake Nyasa. Annals & Magazine of Natural History 9, 225–249.
New species of cyclopoid and harpacticoid copepods from sandy beaches of Lake Nyasa.CrossRef | open url image1

Gibert, J., Danielopol, D. L., and Stanford, J. A. (1994). ‘Groundwater Ecology.’ (Academic Press: London.)

Giribet, G., and Edgecombe, G. D. (2006). The importance of looking at small-scale patterns when inferring Gondwanan biogeography: a case study of the centipede Paralamyctes (Chilopoda, Lithobiomorpha, Henicopidae). Biological Journal of the Linnean Society. Linnean Society of London 89, 65–78.
The importance of looking at small-scale patterns when inferring Gondwanan biogeography: a case study of the centipede Paralamyctes (Chilopoda, Lithobiomorpha, Henicopidae).CrossRef | open url image1

Glatzel, T., and Schminke, H. K. (1996). Mating behaviour of the groundwater copepod Parastenocaris phyllura Kiefer, 1938 (Copepoda: Harpacticoida). Contributions to Zoology (Amsterdam, Netherlands) 66, 103–108. open url image1

Gurney, R. (1928). Some Copepoda from Tanganyika collected by Mr S.R.B. Pask. Proceedings of the Zoological Society of London 22, 317–332. open url image1

Guzik, M. T., Abrams, K. M., Cooper, S. J. B., Humphreys, W. F., Cho, J.-L., and Austin, A. D. (2008). Phylogeography of the ancient Parabathynellidae (Crustacea: Bathynellacea) from the Yilgarn region of Western Australia. Invertebrate Systematics 22, 205–216.
Phylogeography of the ancient Parabathynellidae (Crustacea: Bathynellacea) from the Yilgarn region of Western Australia.CrossRef | open url image1

Guzik, M. T., Cooper, S. J. B., Humphreys, W. F., and Austin, A. D. (2009). Fine-scale comparative phylogeography of a sympatric sister species triplet of subterranean diving beetles from a single calcrete aquifer in Western Australia. Molecular Ecology 18, 3683–3698.
Fine-scale comparative phylogeography of a sympatric sister species triplet of subterranean diving beetles from a single calcrete aquifer in Western Australia.CrossRef | 1:CAS:528:DC%2BD1MXht1WhtrbM&md5=24f5c65b6d3a56b9e4e18f85f548ff1aCAS | open url image1

Guzik, M. T., Austin, A. D., Cooper, S. J. B., Harvey, M. S., Humphreys, W. F., Bradford, T., Eberhard, S. M., King, R. A., Leys, R., Muirhead, K. A., and Tomlinson, M. (2011a). Is the Australian subterranean fauna uniquely diverse? Invertebrate Systematics 24, 407–418.
Is the Australian subterranean fauna uniquely diverse?CrossRef | open url image1

Guzik, M. T., Cooper, S. J. B., Humphreys, W. F., Ong, S., Kawakami, T., and Austin, A. D. (2011b). Evidence for population fragmentation within a subterranean aquatic habitat in the Western Australian desert. Heredity 107, 215–230.
Evidence for population fragmentation within a subterranean aquatic habitat in the Western Australian desert.CrossRef | 1:STN:280:DC%2BC3MjmslSjtQ%3D%3D&md5=c9ad53d005f38e39765d7e2b6a08a14eCAS | open url image1

Halse, S. A., Cale, D. J., Jasinska, E. J., and Shiel, R. J. (2002). Monitoring change in aquatic invertebrate biodiversity: sample size, faunal elements and analytical methods. Aquatic Ecology 36, 395–410.
Monitoring change in aquatic invertebrate biodiversity: sample size, faunal elements and analytical methods.CrossRef | open url image1

Harvey, M. S. (2002). Short-range endemism amongst the Australian fauna: examples from non-marine environments. Invertebrate Systematics 16, 555–570.
Short-range endemism amongst the Australian fauna: examples from non-marine environments.CrossRef | open url image1

Hasegawa, M., Kishino, H., and Yano, T. (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22, 160–174.
Dating of the human-ape splitting by a molecular clock of mitochondrial DNA.CrossRef | 1:CAS:528:DyaL2MXmtFSns7g%3D&md5=f35f2401e5d0b470322cd8f38bcc35c2CAS | open url image1

Hebert, P. D. N., Cywinska, A., Ball, S. L., and deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London 270, 313–321.
Biological identifications through DNA barcodes.CrossRef | 1:CAS:528:DC%2BD3sXktVWiu7g%3D&md5=bacde07336013937477a1e8839a85156CAS | open url image1

Hebert, P. D. N., Stoeckle, M. Y., Zemlak, T. S., and Francis, C. M. (2004). Identification of birds through DNA barcodes. PLoS Biology 2, 1657–1663.
Identification of birds through DNA barcodes.CrossRef | 1:CAS:528:DC%2BD2cXosVSgu7w%3D&md5=f7dd2c951dfb307fcbb2b73026e6ada6CAS | open url image1

Hennig, W. (1966). ‘Phylogenetic Systematics.’ (University of Illinois Press: Champaign, IL, USA.)

Holmgren, M., Stapp, P., Dickman, C. R., Gracia, C., Graham, S., Gutiérrez, J. R., Hice, C., Jaksic, F., Kelt, D. A., Letnic, M., Lima, M., López, B. C., Meserve, P. L., Milstead, W. B., Polis, G. A., Previtali, M. A., Richter, M., Sabate, S., and Squeo, F. A. (2006). Extreme climatic events shape arid and semiarid ecosystems. Frontiers in Ecology and the Environment 4, 87–95.
Extreme climatic events shape arid and semiarid ecosystems.CrossRef | open url image1

Huelsenbeck, J. P., and Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogeny. Bioinformatics (Oxford, England) 17, 754–755.
MRBAYES: Bayesian inference of phylogeny.CrossRef | 1:STN:280:DC%2BD3MvotV2isw%3D%3D&md5=89aaec60163cef8dac4fe0ecf046c64cCAS | open url image1

Humphreys, W. F. (2000). Background and glossary. In ‘Ecosystems of the World, 30: Subterranean Ecosystems’. (Eds H. Wilkens, D. C. Culver and W. F. Humphreys.) pp. 3–14. (Elsevier: Amsterdam.)

Humphreys, W. F. (2001). Groundwater calcrete aquifers in the Australian arid zone: the context to an unfolding plethora of stygal biodiversity. Records of the Western Australian Museum , 63–83. open url image1

Humphreys, W. F. (2006). Aquifers: the ultimate groundwater-dependent ecosystems. Australian Journal of Botany 54, 115–132.
Aquifers: the ultimate groundwater-dependent ecosystems.CrossRef | open url image1

Humphreys, W. F. (2008). Rising from Down Under: developments in subterranean biodiversity in Australia from a groundwater perspective. Invertebrate Systematics 22, 85–101.
Rising from Down Under: developments in subterranean biodiversity in Australia from a groundwater perspective.CrossRef | open url image1

Huys, R. (2009). Unresolved cases of type fixation, synonymy and homonymy in harpacticoid copepod nomenclature (Crustacea: Copepoda). Zootaxa 2183, 1–99. open url image1

Huys, R., and Boxshall, G. A. (1991). ‘Copepod Evolution.’ (The Ray Society: London.)

Karanovic, T. (2004). Subterranean Copepoda from arid Western Australia. Crustaceana Monographs 3, 1–366. open url image1

Karanovic, T. (2006). Subterranean copepods (Crustacea, Copepoda) from the Pilbara region in Western Australia. Records of the Western Australian Museum , 1–239. open url image1

Karanovic, I. (2007). Candoninae ostracods from the Pilbara region in Western Australia. Crustaceana Monographs 7, 1–432. open url image1

Karanovic, T. (2008). Marine interstitial Poecilostomatoida and Cyclopoida (Copepoda) of Australia. Crustaceana Monographs 9, 1–331. open url image1

Karanovic, T. (2010). First record of the harpacticoid genus Nitocrellopsis (Copepoda, Ameiridae) in Australia, with descriptions of three new species. International Journal of Limnology 46, 249–280.
First record of the harpacticoid genus Nitocrellopsis (Copepoda, Ameiridae) in Australia, with descriptions of three new species.CrossRef | open url image1

Karanovic, T., and Cooper, S. J. B. (2011). Molecular and morphological evidence for short range endemism in the Kinnecaris solitaria complex (Copepoda: Parastenocarididae), with description of seven new species. Zootaxa 3026, 1–64. open url image1

Karanovic, T., and Hancock, P. (2009). On the diagnostic characters of the genus Stygonitocrella (Copepoda, Harpacticoida), with descriptions of seven new species from Australian subterranean waters. Zootaxa 2324, 1–85. open url image1

Karanovic, T., and Tang, D. (2009). A new species of the copepod genus Australoeucyclops (Crustacea: Cyclopoida: Eucyclopinae) from Western Australia shows the role of aridity in habitat shift and colonization of ground water. Records of the Western Australian Museum 25, 247–263. open url image1

Karanovic, T., Eberhard, S. M., and Murdoch, A. (2011). A cladistic analysis and taxonomic revision of Australian Metacyclops and Goniocyclops, with description of four new species and three new genera (Copepoda, Cyclopoida). Crustaceana 84, 1–67.
A cladistic analysis and taxonomic revision of Australian Metacyclops and Goniocyclops, with description of four new species and three new genera (Copepoda, Cyclopoida).CrossRef | open url image1

Kiefer, F. (1934). Neue Ruderfusskrebse von der Insel Haiti. Zoologischer Anzeiger 108, 227–233. open url image1

King, R. A., Bradford, T., Austin, A. D., Humphreys, W. F., and Cooper, S. J. B. (2012). Divergent molecular lineages and not-so-cryptic species: the first descriptions of stygobitic chiltoniid amphipods (Talitroidea: Chiltoniidae) from Western Australia. Journal of Crustacean Biology 32, 465–488. open url image1

Klie, W. (1923). Über eine neue Brackwasserart der Harpacticoiden-Gattung Amphiascus. Archiv fuer Hydrobiologie 14, 335–339. open url image1

Kubota, K., and Sota, T. (1998). Hybridization and speciation in the carabid beetles of the subgenus Ohomopterus (Coleoptera, Carabidae, genus Carabus). Researches on Population Ecology 40, 213–222.
Hybridization and speciation in the carabid beetles of the subgenus Ohomopterus (Coleoptera, Carabidae, genus Carabus).CrossRef | open url image1

Kumar, S., Dudley, J., Nei, M., and Tamura, K. (2008). MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics 9, 299–306.
MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences.CrossRef | 1:CAS:528:DC%2BD1cXpt1artrg%3D&md5=dbb82b931f522447e58674918576e8bdCAS | open url image1

Lang, K. (1948). ‘Monographie der Harpacticiden, A-B.’ (Nordiska Bokhandeln: Lund, Sweden.)

Lang, K. (1965a). Copepoda Harpacticoida from the Californian Pacific Coast. Almquist and Wiksell, Stockholm 10, 1–560. open url image1

Lang, K. (1965b). Copepoda Harpacticoidea aus dem Kustengrundwasser dicht bei dem Askölaboratorium. Arkiv för Zoologi 18, 73–83. open url image1

Langecker, T. G. (2000). The effect of continous darkness on cave ecology and cavernicolous evolution. In ‘Ecosystems of the World, 30: Subterranean Ecosystems’. (Eds H. Wilkens, D. C. Culver and W. F. Humphreys.) pp. 135–157. (Elsevier: Amsterdam.)

Lefébure, T., Douady, C. J., Gouy, M., and Gibert, J. (2006). Relationship between morphological taxonomy and molecular divergence within Crustacea: proposal of a molecular threshold to help species delimination. Molecular Phylogenetics and Evolution 40, 435–447.
Relationship between morphological taxonomy and molecular divergence within Crustacea: proposal of a molecular threshold to help species delimination.CrossRef | open url image1

Lescher-Moutoué, F. (1973). Sur la biologie et l’écologie des copepods cyclopides hypogés (Crustacés). Annales de Spéléologie 28, 429–674. open url image1

Leyequién, E., de Boer, W. F., and Cleef, A. (2007). Influence of body size on coexistence of bird species. Ecological Research 22, 735–741.
Influence of body size on coexistence of bird species.CrossRef | open url image1

Leys, R., and Watts, C. H. (2008). Systematics and evolution of the Australian subterranean hydroporine diving beetles (Dytiscidae), with notes on Carabhydrus. Invertebrate Systematics 22, 217–225.
Systematics and evolution of the Australian subterranean hydroporine diving beetles (Dytiscidae), with notes on Carabhydrus.CrossRef | open url image1

Leys, R., Watts, C. H. S., Cooper, S. J. B., and Humphreys, W. F. (2003). Evolution of subterranean diving beetles (Coleoptera: Dytiscidae: Hydroporini, Bidessini) in the arid zone of Australia. Evolution 57, 2819–2834. open url image1

Martin, H. A. (2006). Cenozoic climatic change and the development of the arid vegetation in Australia. Journal of Arid Environments 66, 533–563.
Cenozoic climatic change and the development of the arid vegetation in Australia.CrossRef | open url image1

Mayr, E. (1963). ‘Animal Species and Evolution.’ (Harvard University Press: Cambridge, MA, USA.)

Mayr, E. (2001). ‘What Evolution Is.’ (Basic Books: New York, NY, USA.)

Mielke, W. (1975). Systematik der Copepoda eines Sandstrandes der Nordseeinsel Sylt. Mikrofauna des Meeresbodens 52, 1–134. open url image1

Mielke, W. (1992). Description of some benthic Copepoda from Chile and a discussion on the relationships of Paraschizopera and Schizopera (Diosaccidae). Microfauna Marina 7, 79–100. open url image1

Mielke, W. (1995). Species of the taxon Schizopera (Copepoda) from the Pacific coast of Costa Rica. Microfauna Marina 10, 89–116. open url image1

Mirabdullayev, I. M., and Ginatullina, E. N. (2007). The genus Schizopera (Copepoda, Harpacticoida) in Uzbekistan (central Asia). Vestnik Zoologii 41, 305–313. open url image1

Nagel, L., and Schluter, D. (1998). Body size, natural selection, and speciation in stickleback. Evolution 52, 209–218.
Body size, natural selection, and speciation in stickleback.CrossRef | open url image1

Noodt, W. (1954). Sandstrand-Copepoden von der schwedischen Ostküste. Kungl. Fysiografiska Sallskapets I Lund Forhandlingar 24, 1–8. open url image1

Noodt, W. (1955). Harpacticiden (Crust. Cop.) aus dem Sandstrand der französischen Biscaya-Küste. Kieler Meeresforschungen 11, 86–109. open url image1

Noodt, W. (1958). Schizopera pratensis n. sp. von Salzwiesen der deutschen Meeresküste (Crustacea, Copepoda). Kieler Meeresforschungen 14, 223–225. open url image1

Petkovski, T. K. (1954). Harpacticiden des Grundwassers unserer Meeresküste. Acta Musei Macedonici Scientiarum Naturalium 2, 93–123. open url image1

Pfenninger, M., and Schwenk, K. (2007). Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evolutionary Biology 7, 121–127.
Cryptic animal species are homogeneously distributed among taxa and biogeographical regions.CrossRef | open url image1

Pipan, T., and Brancelj, A. (2003). Fauna of epikarst – Copepoda (Crustacea) in percolation water of caves in Slovenia. Annales Series Historia Naturalis (Koper) 13, 223–228. open url image1

Pipan, T., and Brancelj, A. (2004). Distribution patterns of copepods (Crustacea: Copepoda) in percolation water of the Postojnska Jama cave system (Slovenia). Zoological Studies 43, 206–210. open url image1

Por, F. D. (1968). The benthic Copepoda of Lake Tiberias and of some inflowing springs. Israel Journal of Zoology 17, 31–50. open url image1

Posada, D., and Crandall, K. A. (1998). Modeltest: testing the model of DNA substitution. Bioinformatics (Oxford, England) 14, 817–818.
Modeltest: testing the model of DNA substitution.CrossRef | 1:CAS:528:DyaK1MXktlCltw%3D%3D&md5=96deade1c75c4e555f1a98ea1a9c9435CAS | open url image1

Quesada, H., Posada, D., Caballero, A., Moran, P., and Rolan-Alvarez, E. (2007). Phylogenetic evidence for multiple sympatric ecological diversification in a marine snail. Evolution 61, 1600–1612.
Phylogenetic evidence for multiple sympatric ecological diversification in a marine snail.CrossRef | open url image1

Rambaut, A., and Drummond, A. J. (2007). Tracer: MCMC Trace Analysis Package. Available at http://tree.bio.ed.ac.uk/software/tracer/ [verified June 2012]

Rodríguez, F., Oliver, J. F., Marín, A., and Medina, J. R. (1990). The general stochastic model of nucleotide substitutions. Journal of Theoretical Biology 142, 485–501.
The general stochastic model of nucleotide substitutions.CrossRef | open url image1

Romer, A. S. (1960). Explosive evolution. Zoologische Jahrbucher 88, 79–90. open url image1

Ronquist, F., and Huelsenbeck, J. P. (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics (Oxford, England) 19, 1572–1574.
MRBAYES 3: Bayesian phylogenetic inference under mixed models.CrossRef | 1:CAS:528:DC%2BD3sXntlKms7k%3D&md5=9c53a6e1009ac0a4829f70ecd07199e1CAS | open url image1

Rouch, R., and Chappuis, P. A. (1960). Sur quelques Copépodes Harpacticoides du lac Tanganika. Revue de Zoologie et de Botanique Africaines 61, 283–286. open url image1

Rundle, H. D., Nagel, L., Wenrick Boughman, J., and Schluter, D. (2000). Natural selection and parallel speciation in sympatric stricklbacks. Science 287, 306–308.
Natural selection and parallel speciation in sympatric stricklbacks.CrossRef | 1:CAS:528:DC%2BD3cXlvVWqug%3D%3D&md5=ec87df1d549bb3aacc81c9868b6292f6CAS | open url image1

Ryan, P. G., Bloomer, P., Moloney, C. L., Grant, T. J., and Delport, W. (2007). Ecological speciation in south Atlantic island finches. Science 315, 1420–1423.
Ecological speciation in south Atlantic island finches.CrossRef | 1:CAS:528:DC%2BD2sXisVKrsrc%3D&md5=2ed2cb5785a8f424bec16bdbc32e7cc4CAS | open url image1

Sakaguchi, S. O., and Ueda, H. (2010). A new species of Pseudodiaptomus (Copepoda: Calanoida) from Japan, with notes on closely related P. inopinus Bruckhardt, 1913 from Kyushu Island. Zootaxa 2623, 52–68. open url image1

Sanders, C. C. (1973). Hydrogeology of a calcrete deposit on Paroo Station, Wiluna, and surrounding areas. Western Australian Geological Survey Annual Report 1973, 15–26. open url image1

Sars, G. O. (1905). Pacifische Plankton-Crustaceen; Ergebnisse einer Reise nach dem Pacific Schauinsland 1896–1897, II. Brackwasser-Crustaceen von den Chatham-Inseln. Zoologische Jahrbücher. Abteilung für Systematik 21, 371–414. open url image1

Sars, G. O. (1909). Zoological results of the third Tanganyika expedition, report on the Copepoda. Proceedings of the Zoological Society of London 1909, 31–77. open url image1

Savolainen, V., Anstett, M. C., Lexer, C., Hutton, I., Clarkson, J. J., Norup, M. V., Powell, M. P., Springate, D., Salamin, N., and Baker, W. J. (2006). Sympatric speciation in palms on an oceanic island. Nature 441, 210–213.
Sympatric speciation in palms on an oceanic island.CrossRef | 1:CAS:528:DC%2BD28XksVGnsrs%3D&md5=de466c8069e3c05690e7ab09c6df7c85CAS | open url image1

Sota, T., Takami, Y., Kubota, K., Ujiie, M., and Ishikawa, R. (2000). Interspecific body size differentiation in species assemblages of the carabid subgenus Ohomopterus in Japan. Population Ecology 42, 279–291.
Interspecific body size differentiation in species assemblages of the carabid subgenus Ohomopterus in Japan.CrossRef | open url image1

Soyer, J. (1974). Harpacticoïdes (Crustacés Copépodes) de l’archipel de Kerguelen, 1. Quelques forms mésopsammiques. Bulletin du Muséum National d’Historie Naturelle. Zoologie 168, 1169–1222. open url image1

Stamatakis, A., Hoover, P., and Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web-servers. Systematic Biology 57, 758–771.
A rapid bootstrap algorithm for the RAxML web-servers.CrossRef | open url image1

Stock, J. K., and von Vaupel Klein, J. C. (1996). Mounting media revisited: the suitability of Reyne’s fluid for small crustaceans. Crustaceana 69, 794–798.
Mounting media revisited: the suitability of Reyne’s fluid for small crustaceans.CrossRef | open url image1

Swofford, D. L. (2002). ‘PAUP*. Phylogenetic Analysis Using Parsimony (* and Other Methods). Version 4.0b10.’ (Sinauer Associates: Sunderland, MA, USA.)

Watts, C. H. S., and Humphreys, W. F. (2006). Twenty-six new Dytiscidae (Coleoptera) of the genera Limbodessus Guignot and Nirripirti Watts and Humphreys from underground waters in Australia. Transaction of the Royal Society of South Australia 130, 123–185. open url image1

Watts, C. H. S., and Humphreys, W. F. (2009). Fourteen new Dytiscidae (Coleoptera) of the genera Limbodessus Guignot, Paroster Sharp and Exocelina Broun, from underground waters in Australia. Transactions of the Royal Society of South Australia 133, 62–107. open url image1

Wells, J. B. J. (2007). An annotated checklist and keys to the species of Copepoda Harpacticoida. Zootaxa 1568, 1–872. open url image1

Wells, J. B. J., and Rao, G. C. (1976). The relationship of the genus Schizopera Sars within the family Diosaccidae (Copepoda: Harpacticoida). Zoological Journal of the Linnean Society 58, 79–90.
The relationship of the genus Schizopera Sars within the family Diosaccidae (Copepoda: Harpacticoida).CrossRef | open url image1

Weston, P. H., and Crisp, M. D. (1994). Cladistic biogeography of waratahs (Proteaceae: Embothrieae) and their allies across the Pacific. Australian Systematic Botany 7, 225–249.
Cladistic biogeography of waratahs (Proteaceae: Embothrieae) and their allies across the Pacific.CrossRef | open url image1

Will, K. W., Mishler, B. D., and Wheeler, Q. D. (2005). The perils of DNA barcoding and the need for integrative taxonomy. Systematic Biology 54, 844–851.
The perils of DNA barcoding and the need for integrative taxonomy.CrossRef | open url image1

Willen, E. (2000). ‘Phylogeny of the Thalestridimorpha Lang, 1944 (Crustacea, Copepoda).’ (Cuvillier Verlag: Goettingen.)

Wilson, G. D. F. (2008). Gondwanan groundwater: subterranean connections of Australian phreatoicidean isopods to India and New Zealand. Invertebrate Systematics 22, 301–310.
Gondwanan groundwater: subterranean connections of Australian phreatoicidean isopods to India and New Zealand.CrossRef | open url image1

Yang, Z. (1996). Among-site rate variation and its impact on phylogenetic analyses. Trends in Ecology & Evolution 11, 367–372.
Among-site rate variation and its impact on phylogenetic analyses.CrossRef | 1:STN:280:DC%2BC3M7itFGjtw%3D%3D&md5=bd3460dd82033a0f83fcb393ea13c78aCAS | open url image1



Export Citation