Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences

Effects of simulated green turtle regrazing on seagrass abundance, growth and nutritional status in Moreton Bay, south-east Queensland, Australia

Marianne Kuiper-Linley A , Craig R. Johnson B and Janet M. Lanyon A C
+ Author Affiliations
- Author Affiliations

A School of Integrative Biology, The University of Queensland, St Lucia, Qld 4072, Australia.

B School of Zoology, University of Tasmania, Private Bag 5, Hobart, Tas. 7000, Australia.

C Corresponding author. Email:

Marine and Freshwater Research 58(5) 492-503
Submitted: 14 December 2006  Accepted: 5 April 2007   Published: 22 May 2007


In some parts of their range, green turtles maintain grazing plots in seagrass beds by regular regrazing. The effects of simulated repeated grazing on subtropical seagrasses in Moreton Bay, Australia were investigated in a manipulative experiment over summer. Three seagrass species were subjected to two different clipping frequencies (simulating turtle cropping) and compared with unclipped controls over a 3.5-month summer period for the effects on seagrass biomass, leaf size and regrowth rates and water-soluble carbohydrate (WSC) and starch content. The order of the seagrass species’ relative tolerance to simulated grazing was Halophila ovalis > Zostera capricorni > Cymodocea serrulata. Frequent regrazing of the green turtle’s preferred seagrass, H. ovalis, resulted in an increase in leaf regrowth rate so that standing biomass of leaves and total plant material was maintained, suggesting an increase in productivity. Furthermore, whole-plant concentrations of WSC increased significantly in clipped H. ovalis plants relative to unclipped controls. In contrast, leaf biomass of the seagrass species less preferred by turtles, Z. capricorni and C. serrulata, decreased in response to repeated leaf removal relative to controls, despite maintenance of leaf regrowth rates. C. serrulata responded to repeated clipping with a reduction in leaf size and a decrease in rhizome WSC concentration. Z. capricorni also produced fewer and smaller new leaves. The ability of the preferred species, H. ovalis, to increase production of nutrient-rich standing crop in response to regrazing has major implications for green turtles and other seagrass grazers.

Additional keywords: Chelonia mydas, disturbance, green turtle, regrazing, seagrass.


We thank Graham Bonnett, Richard Simpson and Hugh Dove (CSIRO Division of Plant Industry, ACT) for assistance with water-soluble carbohydrate and starch analyses; Shad, Vonika and Jack Linley for field assistance; and the School of Integrative Biology, The University of Queensland for financial support. This study reports on an Honours project by M.K.L.


Aragones L. (1996). Dugongs and green turtles: grazers in the tropical seagrass ecosystem. Ph.D. Thesis, James Cook University, Townsville.

Aragones, L. , and Marsh, H. (2000). Impact of dugong grazing and turtle cropping on tropical seagrass communities. Pacific Conservation Biology 5, 277–288.

Bell, J. D. , and Westoby, M. (1986). Importance of local changes in leaf height and density to fish and decapods associated with seagrasses. Journal of Experimental Marine Biology and Ecology 104, 249–274.
CrossRef |

Bjorndal, K. A. (1980). Nutrition and grazing behaviour of the green turtle Chelonia mydas. Marine Biology 56, 147–154.
CrossRef |

Bjorndal, K. A. (1985). Nutritional ecology of sea turtles. Copeia 1985, 736–751.
CrossRef |

Boon, P. I. , Moriarty, D. J. W. , and Saffigna, P. S. (1986). Nitrate metabolism in sediments from seagrass (Zostera capricorni) beds of Moreton Bay, Australia. Marine Biology 91, 269–275.
CrossRef |

Brand S. J. (1995). Diet selection by juvenile green turtles Chelonia mydas, in subtropical Flathead Gutter, Moreton Bay. Honours Thesis, Zoology Department, The University of Queensland, Brisbane.

Brand-Gardner, S. J. , Lanyon, J. M. , and Limpus, C. J. (1999). Diet selection by immature green turtles Chelonia mydas, in sub-tropical Moreton Bay, south-east Queensland. Australian Journal of Zoology 47, 181–191.
CrossRef |

Buchsbaum, R. , and Valiela, I. (1987). Variability in the chemistry of estuarine plants and its effect on feeding by Canada geese. Oecologia 73, 146–153.
CrossRef |

Clarke S. M., and Kirkman H. (1989). Seagrass dynamics. In ‘Biology of Seagrasses’. (Eds A. W. D. Larkum, A. J. McComb and S. A. Shepherd.) pp. 304–305. (Elsevier: Amsterdam.)

Coles R. G., Poiner I. R., and Kirkman H. (1989). Regional studies – seagrasses of north-eastern Australia. In ‘Biology of Seagrasses’. (Eds A. W. D. Larkum, A. J. McComb and S. A. Shepherd.) pp. 261–278. (Elsevier: Amsterdam.)

Dawes, C. J. , and Lawrence, J. M. (1983). Proximate composition and caloric content of seagrasses. Marine Technology Society Journal 17, 53–58.

Dawes, C. J. , Bird, K. , Durako, M. , Goddard, R. , Hoffman, W. , and McIntosh, R. (1979). Chemical fluctuations due to seasonal and cropping effects on an algal-seagrass community. Aquatic Botany 6, 79–86.
CrossRef |

Dawes, C. J. , Chann, M. , Chinn, R. , Koch, E. W. , Lazar, A. , and Tomasko, D. (1987). Proximate composition, photosynthetic and respiratory responses of the seagrass Halophila engelmanni from Florida. Aquatic Botany 27, 195–201.
CrossRef |

den Hartog C. (1970). ‘The Seagrasses of the World.’ (North Holland Publishing Co.: Amsterdam.)

Draper N., and Smith H. (1981). ‘Applied Regression Analysis.’ (Wiley: New York.)

Drew E. A. (1980). Soluble carbohydrate composition of seagrasses. In ‘Handbook of Seagrass Biology’. (Eds R. C. Phillips and C. P. McRoy.) pp. 247–259. (Garland STPM: New York.)

Duffy J. E., and Hay M. E. (2001). Ecology and evolution of marine consumer–prey interactions. In ‘Marine Community Ecology’. (Eds M. Bertness, M. E. Hay and S. D. Gaines.) pp. 131–157. (Sinauer Press: Sunderland, MA.)

Greenway, M. (1974). The effects of cropping on the growth of Thalassia testudinum in Jamaica. Aquaculture 4, 199–206.
CrossRef |

Humphreys, M. O. (1989). Water-soluble carbohydrates in perennial ryegrass breeding. III. Relationships with herbage production, digestibility and crude protein content. Grass and Forage Science 44, 423–430.
CrossRef |

Hyland S. J., Courtney A. J., and Butler C. T. (1989). ‘Distribution of Seagrass in the Moreton Region from Coolangatta to Noosa.’ Queensland Department of Primary Industries Information Series QI 189010. (Queensland Government: Brisbane.)

Jacobs, R. P. W. M. , den Hartog, C. , Braster, B. F. , and Carriere, F. C. (1981). Grazing of the seagrass Zostera noltii by birds at Terschelling (Dutch Wadden Sea). Aquatic Botany 10, 241–259.
CrossRef |

Jermyn, M. A. (1975). Increasing the sensitivity of the anthrone method for carbohydrate. Analytical Biochemistry 68, 332–335.
CrossRef | PubMed |

Jones, E. L. , and Roberts, J. E. (1991). A note on the relationship between palatability and water-soluble carbohydrates in perennial ryegrass. Irish Journal of Agricultural Research 30, 163–167.

Lanyon J. M. (1991). The nutritional ecology of the dugong, Dugong dugon, in tropical Australian waters. Ph.D. Thesis, Monash University, Melbourne.

Lanyon, J. M. (2003). Distribution and abundance of dugongs in Moreton Bay, Queensland Australian Wildlife Research 30, 397–409.
CrossRef |

Lanyon J. M., Limpus C. J., and Marsh H. (1989). Dugongs and turtles: grazers in the seagrass system. In ‘Biology of Seagrasses’. (Eds A. W. D. Larkum, A. J. McComb and S. A. Shepherd.) pp. 610–634. (Elsevier: Amsterdam.)

Lee Long, W. , Mellors, J. E. , and Coles, R. G. (1993). Seagrasses between Cape York and Hervey Bay, Queensland, Australia. Australian Journal of Marine and Freshwater Research 44, 33–42.

Limpus C. J. (1982). Status of Australian sea turtle populations. In ‘Biology and Conservation of Sea Turtles’. (Ed. K. A. Bjorndal.) pp. 207–393. (Smithsonian Institution Press: Washington, DC.)

Limpus, C. J. , Couper, P. J. , and Read, M. A. (1994). The green turtle, Chelonia mydas, in Queensland: population structure in a warm temperate feeding area. Memoirs of the Queensland Museum 35, 139–154.

Mattson, W. J. (1980). Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systematics 11, 119–161.
CrossRef |

McMillan, C. , and Phillips, R. C. (1979). Differentiation in habitat response among populations of new world seagrasses. Aquatic Botany 7, 185–196.
CrossRef |

Ogden J. C. (1980). Faunal relationships in Caribbean seagrass beds. In ‘Handbook of Seagrass Biology’. (Eds R. C. Phillips and C. P. McRoy.) pp. 173–198. (Garland STPM: New York.)

Ogden, J. C. , Tighe, S. , and Miller, S. (1980). Grazing of seagrasses by large herbivores in the Caribbean. American Zoologist 20, 949.

Ogden, J. C. , Robinson, L. , Whitlock, K. , Daganhardt, H. , and Cebula, R. (1983). Diel foraging patterns in juvenile green turtles (Chelonia mydas L.) in St. Croix United States Virgin Islands. Journal of Experimental Marine Biology and Ecology 66, 199–205.
CrossRef |

Ott, J. A. (1980). Growth and production in Posidonia oceanica (L.) Delile. P.S.Z.N.I. Marine Ecology 1, 47–64.

Phillips, R. C. , and Lewis, R. L. (1983). Influence of environmental gradients on variations in leaf widths and transplant success in North American seagrasses. Marine Technology Society Journal 17, 59–68.

Pirc, H. (1985). Growth dynamics in Posidonia oceanica (L.) Delile. P.S.Z.N.I. Marine Ecology 6, 141–165.

Poiner I. R. (1984). Interspecific interactions: their role in structuring multispecific seagrass communities. In ‘The Ecological Basis of Interactions Between Organisms’. (Eds M. J. Liddle and J. C. Tothill.) AES Monograph 1/84. (School of Australian Environmental Studies, Griffith University, Brisbane.)

Preen A. R. (1992). Interactions between dugongs and seagrasses in a subtropical environment. Ph.D. Thesis, James Cook University of North Queensland, Townsville.

Preen, A. R. (1995). Impacts of dugong foraging on seagrass habitats: observational and experimental evidence for cultivation grazing. Marine Ecology Progress Series 124, 201–213.

Radojevic, I. , Simpson, R. J. , St. John, J. A. , and Humphreys, M. O. (1994). Chemical composition and in vitro digestibility of lines of Lolium perenne selected for high concentration of water-soluble carbohydrate. Australian Journal of Agricultural Research 45, 901–912.
CrossRef |

Read M. A. (1991). Observations on the feeding ecology of immature green turtles Chelonia mydas, in the Moreton Banks region of Moreton Bay, south east Queensland. Honours Thesis, Department of Zoology, The University of Queensland, Brisbane.

Thayer, G. W. , Bjorndal, K. A. , Ogden, J. C. , Williams, S. L. , and Zieman, J. C. (1984). Role of larger herbivores in seagrass communities. Estuaries 7, 351–376.
CrossRef |

Valentine, J. F. , and Heck, K. L. (1991). The role of sea urchin grazing in regulating seagrass meadow size. Journal of Experimental Marine Biology and Ecology 154, 215–230.
CrossRef |

Walker, D. I. , Lukatelich, R. J. , Bastyan, G. , and McComb, A. J. (1989). Effect of boat moorings on seagrass beds near Perth, Western Australia. Aquatic Botany 36, 69–77.
CrossRef |

Williams, S. L. (1988). Thalassia testudinum productivity and grazing by green turtles in a highly disturbed seagrass bed. Marine Biology 98, 447–455.
CrossRef |

Yemm, E. W. , and Willis, A. J. (1954). The estimation of carbohydrates in plant extracts by anthrone. The Biochemical Journal 57, 508–514.
PubMed |

Young, P. C. , and Kirkman, H. (1975). The seagrass communities of Moreton Bay, Queensland. Aquatic Botany 1, 191–202.
CrossRef |

Zieman, J. C. (1975). Seasonal variation of turtle grass, Thalassia testudinum Konig, with reference to temperature and salinity effects. Aquatic Botany 1, 107–123.
CrossRef |

Zieman, J. C. (1976). The ecological effect of physical damage from motor boats on turtle grass beds in southern Florida. Aquatic Botany 2, 127–139.
CrossRef |

Zieman, J. C. , Iverson, R. L. , and Ogden, J. C. (1984). Herbivory effects on Thalassia testudinum leaf growth and nitrogen content. Marine Ecology Progress Series 15, 151–158.

Rent Article (via Deepdyve) Export Citation Cited By (17)