Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Faunal relationships with seagrass habitat structure: a case study using shrimp from the Indo-Pacific

Richard K. F. Unsworth A E , Sammy De Grave C , Jamaluddin Jompa D , David J. Smith A and James J. Bell B
+ Author Affiliations
- Author Affiliations

A Coral Reef Research Unit, Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.

B Centre for Marine Environmental and Economic Research, School of Biological Sciences, Victoria, University of Wellington, PO Box 600, Wellington, New Zealand.

C Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK.

D Center for Coral Reef Research, Hasanuddin University, Gedung PKP Lt. 5, Kampus UNHAS Tamalanrea, Makassar, 90245, Indonesia.

E Corresponding author. Email: richardunsworth@hotmail.com

Marine and Freshwater Research 58(11) 1008-1018 https://doi.org/10.1071/MF07058
Submitted: 20 March 2007  Accepted: 8 October 2007   Published: 3 December 2007

Abstract

Caridean shrimp were used as a model group to investigate the effects of seagrass floral habitat complexity on Indo-Pacific fauna. Relationships between shrimp and seagrass habitat characteristics were explored using both multivariate and multiple linear regression modelling approaches. Epifaunal shrimp assemblages were sampled in the Wakatobi Marine National Park, Indonesia. Seagrass habitat complexity had a significant positive impact on shrimp abundance (F3,59 = 17.51, P < 0.001) and species richness (F3,59 = 10.88, P < 0.001), while significantly altering shrimp assemblage structure (ANOSIM global R = 0.397, P < 0.001). In contrast to studies from other bioregions and faunal groups, species diversity and evenness were inversely related to habitat complexity. Changes in shrimp abundance, diversity and assemblage structure with habitat complexity are considered to reflect changes in individual species habitat specialisation. High complexity habitats were dominated by habitat specialists, whereas low complexity seagrass had higher numbers of habitat generalists. Generalist species may be more adapted to the reduced food availability and increased predatory pressures associated with reduced habitat complexity. Although similar patterns were observed at all sites, inter-site differences in shrimp abundance were observed. This indicates that although the present study demonstrates the importance of small-scale changes in seagrass habitat complexity to faunal assemblages, other factors related to larger spatial-scales are also important.

Additional keywords: caridean shrimp, habitat complexity, habitat structure, Indonesia, seagrass.


Acknowledgements

The authors thank the staff at the Hoga Marine Research Centre for their logistic support and Operation Wallacea who provided financial support for travel. Richard Unsworth is grateful to Dr Tim Coles and Operation Wallacea for providing a doctoral studentship; and Oxford University Museum of Natural History for providing shipping and consumable costs. Research authorisation and specimen export permits were provided by Prof. Jamaluddin Jompa and UNHAS.


References

Alongi, D. M. , and Christoffersen, P. (1992). Benthic infauna and organism-sediment relations in a shallow, tropical coastal area – influence of outwelled mangrove detritus and physical disturbance. Marine Ecology Progress Series 81, 229–245.
CrossRef |

Attrill, M. J. , Strong, J. A. , and Rowden, A. A. (2000). Are macroinvertebrate communities influenced by seagrass structural complexity? Ecography 23, 114–121.
CrossRef |

Attum, O. , Eason, P. , Cobbs, G. , and El Din, S. M. B. (2006). Response of a desert lizard community to habitat degradation: Do ideas about habitat specialists/generalists hold? Biological Conservation 133, 52–62.
CrossRef |

Barba, E. , Raz-Guzman, A. , and Sanchez, A. J. (2005). Distribution patterns of estuarine caridean shrimps in the south-western Gulf of Mexico. Crustaceana 78, 709–726.
CrossRef |

Barnes D. K. A., and De Grave S. (2002). Modelling multivariate determinants of growth in Antarctic bryozoans. In ‘Bryozoan Studies’. (Ed. B. S. J. Wyse-Jackson.) pp. 7–17. (Swets and Zeitlinger: Lisse.)

Bauer, R. T. (1985a). Diel and seasonal variation in species composition and abundance of caridean shrimps (Crustacea, Decapoda) from seagrass meadows on the north coast of Puerto Rico. Bulletin of Marine Science 36, 150–162.


Bauer, R. T. (1985b). Penaeoid shrimp fauna from tropical seagrass meadows – species composition, diurnal, and seasonal-variation in abundance. Proceedings. Biological Society of Washington 98, 177–190.


Bell, J. D. , and Westoby, M. (1986a). Abundance of macrofauna in dense seagrass is due to habitat preference, not predation. Oecologia 68, 205–209.
CrossRef |

Bell, J. D. , and Westoby, M. (1986b). Variations in seagrass height and density over a wide spatial scale: effects on fish and decapods. Journal of Experimental Marine Biology and Ecology 104, 275–295.
CrossRef |

Bentley, J. M. , Catterall, C. P. , and Smith, G. C. (2000). Effects of fragmentation of araucarian vine forest on small mammal communities. Conservation Biology 14, 1075–1087.
CrossRef |

Bostrom, C. , and Bonsdorff, E. (1997). Community structure and spatial variation of benthic invertebrates associated with Zosteru marina (L.) beds in the northern Baltic Sea. Journal of Sea Research 37, 153–166.
CrossRef |

Clarke K. R., and Warwick R. M. (1994). ‘Changes in Marine Communities: an Approach to Statistical Analysis and Interpretation.’ (Natural Environmental Research Council, Plymouth Marine Laboratory: Plymouth, UK.)

Connolly, R. M. (1994). A comparison of fish assemblages from seagrass and unvegetated areas of a southern Australian estuary. Australian Journal of Marine and Freshwater Research 45, 1033–1044.
CrossRef |

De Grave, S. , Livingston, D. , and Speight, M. R. (2006). Diel variation in sea grass dwelling shrimp: when to sample at night? Journal of the Marine Biological Association of The United Kingdom 86, 1421–1422.
CrossRef |

Duarte, C. M. , Terrados, J. , Agawin, N. S. R. , and Fortes, M. D. (2000). An experimental test of the occurence of competitive interactions among SE Asian seagrasses. Marine Ecology Progress Series 197, 231–240.
CrossRef |

Futuyma, D. J. , and Moreno, G. (1988). The evolution of ecological specialization. Annual Review of Ecology and Systematics 19, 207–233.
CrossRef |

Garcia Raso, J. E. , Martin, M. J. , Diaz, V. , Cobos, V. , and Manjon-Cabeza, M. E. (2006). Diel and seasonal changes in the structure of a decapod (Crustacea: Decapoda) community of Cymodocea nodosa from south-eastern Spain (West Mediterranean Sea). Hydrobiologia 557, 59–68.
CrossRef |

Gause G. F. (1934). ‘The Struggle for Existence.’ (Williams and Wilkins: Baltimore, MD.)

Gee, J. M. , and Warwick, R. M. (1994). Metazoan community structure in relation to the fractal dimensions of marine macroalgae. Marine Ecology Progress Series 103, 141–150.
CrossRef |

Greening, H. S. , and Livingston, R. J. (1982). Diel variation in structure of seagrass-associated epibenthic macroinvertebrate communities. Marine Ecology Progress Series 7, 147–156.
CrossRef |

Hauser, A. , Attrill, M. J. , and Cotton, P. A. (2006). Effects of habitat complexity on the diversity and abundance of macrofauna colonising artificial kelp holdfasts. Marine Ecology Progress Series 325, 93–100.
CrossRef |

Heck, K. L. , and Wetstone, G. S. (1977). Habitat complexity and invertebrate species richness and abundance in tropical seagrass meadows. Journal of Biogeography 4, 135–142.
CrossRef |

Hemminga M. A., and Duarte C. M. (2000). ‘Seagrass Ecology.’ (Cambridge University Press: Cambridge.)

Hicks G. R. F. (1985). Meiofauna associated with rocky shore algae. In ‘Ecology of Rocky Coasts’. (Eds P. G. Moore and R. Seed.) pp. 36–56. (Hodder and Stoughton: London.)

Hill, B. J. , and Wassenberg, T. J. (1993). Why are some prawns found in seagrass? An experimental study of brown (Penaeus esculentus) and grooved (P. semisulcatus) tiger prawns. Australian Journal of Marine and Freshwater Research 44, 221–227.


Hindell, J. S. (2006). Assessing the trophic link between seagrass habitats and piscivorous fishes. Marine and Freshwater Research 57, 121–131.
CrossRef |

Hovel, K. A. , and Fonseca, M. S. (2005). Influence of seagrass landscape structure on the juvenile blue crab habitat-survival function. Marine Ecology Progress Series 300, 179–191.
CrossRef |

Hutomo M., and Peristiwady T. (1996). Diversity, abundance and diet of fish in the seagrass beds of Lombok Island, Indonesia. In ‘Seagrass Biology: Proceedings of an International Workshop’. (Eds J. Kuo, R. C. Phillips, D. I. Walker and H. Kirkman.) pp. 205–212. (Faculty of Science, University of Western Australia: Rottnest Island, WA.)

Jackson, E. L. , Attrill, M. J. , Rowden, A. A. , and Jones, M. B. (2006). Seagrass complexity hierarchies: Influence on fish groups around the coast of Jersey (English Channel). Journal of Experimental Marine Biology and Ecology 330, 38–54.
CrossRef |

Jenkins, G. P. , May, H. M. A. , Wheatley, M. J. , and Holloway, M. G. (1997). Comparison of fish assemblages associated with seagrass and adjacent unvegetated habitats of Port Phillip Bay and corner inlet, Victoria, Australia, with emphasis on commercial species. Estuarine, Coastal and Shelf Science 44, 569–588.
CrossRef |

Ledoyer, M. (1969). Les Caridea de la frondaison des herbiers de phanérogames de la région de Tuléar. Recueil des Travaux de la Station marine d’Endoume Supplement 8, 63–115.


Ledoyer, M. (1984). Les Caridea (Crustacea: Decapoda) des herbiers de phanérogames marines de Nouvelle-Calédonia (région de Nouméa). Zoologische Verhandelingen 211, 1–58.


Nelson, W. G. , and Bonsdorff, E. (1990). Fish predation and habitat complexity: Are complexity thresholds real? Journal of Experimental Marine Biology and Ecology 141, 183–194.
CrossRef |

Orth, R. J. , Heck, K. L. , and von Montfrans, J. (1984). Faunal communities in seagrass beds: A review of the influence of plant structure and prey characteristics on predator-prey relationships. Estuaries 7, 339–350.
CrossRef |

Orth, R. J. , Carruthers, T. J. B. , Dennison, W. C. , Duarte, C. M. , and Fourqurean, J. W. , et al. (2006). A global crisis for seagrass ecosystems. Bioscience 56, 987–996.
CrossRef |

Parrish, J. D. (1989). Fish communities of interacting shallow-water habitats in tropical oceanic regions. Marine Ecology Progress Series 58, 143–160.
CrossRef |

Skilleter, G. A. , Olds, A. , Loneragan, N. R. , and Zharikov, Y. (2005). The value of patches of intertidal seagrass to prawns depends on their proximity to mangroves. Marine Biology 147, 353–365.
CrossRef |

Stoner, A. W. , and Graham-Lewis, F. (1985). The influence of quantitative and qualitative aspects of habitat complexity in tropical seagrass meadows. Journal of Experimental Marine Biology and Ecology 94, 19–40.
CrossRef |

Unsworth, R. K. F. , Wylie, E. , Bell, J. J. , and Smith, D. J. (2007). Diel trophic structuring of seagrass bed fish assemblages in the Wakatobi Marine National Park, Indonesia. Estuarine, Coastal and Shelf Science 72, 81–88.
CrossRef |

Verweij, M. C. , Nagelkerken, I. , de Graaff, D. , Peeters, M. , Bakker, E. J. , and van der Velde, G. (2006). Structure, food and shade attract juvenile coral reef fish to mangrove and seagrass habitats: a field experiment. Marine Ecology Progress Series 306, 257–268.
CrossRef |



Rent Article (via Deepdyve) Export Citation Cited By (12)