Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences

Contribution of organic matter sources to cyprinid fishes in the Chany Lake–Kargat River estuary, western Siberia

Gen Kanaya A E F , Elena N. Yadrenkina B , Elena I. Zuykova B , Eisuke Kikuchi A , Hideyuki Doi C , Shuichi Shikano A , Chitoshi Mizota D and Natalia I. Yurlova B

A The Center for Northeast Asian Studies, Tohoku University, Sendai 980-8576, Japan.

B Institute of Systematics and Ecology of Animals, SBRAS, Novosibirsk, Russia.

C Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky University Oldenburg, Wilhelmshaven, Germany.

D Faculty of Agriculture, Iwate University, 3-18-8, Ueda, Morioka 020-8550, Japan.

E Present address: National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506, Japan.

F Corresponding author. Email:

Marine and Freshwater Research 60(6) 510-518
Submitted: 2 April 2008  Accepted: 3 December 2008   Published: 19 June 2009


Although omnivorous cyprinid fish often dominate fish communities in shallow eutrophic lakes, their role in the food web is poorly known. In the present study, carbon sources of six cyprinid species were examined in a littoral freshwater habitat in a saline lake complex (Lake Chany, western Siberia, Russia) using stable isotope analyses (SIA). In this habitat, microalgae (phytoplankton and epiphytes), macrophytes and riparian vegetation comprised the major producer groups with distinctive δ13C values. Zooplankton and most benthic invertebrates functioned primarily as microalgae-based consumers, whereas the amphipod Gammarus lacustris depended largely on macrophytes or macrophyte-derived detritus. Cyprinids, Carassius carassius L., Car. auratus gibelio Bloch. and Abramis brama L., mainly utilised microalgae-derived carbon (δ13C-based isotope mixing model: 66–97%) via zooplanktonic trophic mediations. In contrast, Cyprinus carpio L., Leuciscus idus L. and Rutilus rutilus L. depended more on macrophytic and/or riparian production (52–80%) than on microalgal production. Observations and SIA of foregut contents indicated highly opportunistic feeding habits of R. rutilus and L. idus and preference for macrophytes. These results suggested that cyprinid fishes link pelagic, benthic and riparian food webs in this shallow, eutrophic lake ecosystem.

Additional keywords: δ13C and δ15N, food sources, isotopic mixing model, macrophytes, omnivorous fish, phytoplankton.


We thank Dr K. Ito for use of the mass spectrometer (Department of Agriculture, Tohoku University) and Dr A.K. Yurlov for his support throughout the research. M. Yadrenkin, Y.A. Scherbakov, O.N. Popova, and S. Takagi are acknowledged for their help in field and laboratory work. We also thank Dr A. Boulton and two anonymous referees for their critical comments on this manuscript. This study was supported partly by KAKENHI (No. 16405005, 19405008) from JSPS. All experiments and sampling complied with the current laws in the Russian Federation.


Aladin, N. V. , and Plotnikov, I. S. (1993). Large saline lakes of former USSR: a summary review. Hydrobiologia 267, 1–12.
CrossRef | CAS |

Bertolo, A. , Carignan, R. , Magnan, P. , Pinel-Alloul, B. , Planas, D. , and Garcia, E. (2005). Decoupling of pelagic and littoral food webs in oligotrophic Canadian Shield lakes. Oikos 111, 534–546.
CrossRef |

Blanco, S. , Romo, S. , Villena, M.-J. , and Martínez, S. (2003). Fish communities and food web interactions in some shallow Mediterranean lakes. Hydrobiologia 506–509, 473–480.
CrossRef |

Brabrand, Å. (1985). Food of roach (Rutilus rutilus) and ide (Leusiscus idus): significance of diet shift for interspecific competition in omnivorous fishes. Oecologia 66, 461–467.
CrossRef |

Cala, P. (1970). On the ecology of the ide Idus idus (L.) in the River Kävlingeån, South Sweden. Reports of the Institute of Freshwater Research, Drottningholm 50, 45–99.

Doi, H. , Kikuchi, E. , Mizota, C. , Satoh, N. , and Shikano, S. , et al. (2004). Carbon, nitrogen, and sulfur isotope changes and hydro-geological processes in a saline lake chain. Hydrobiologia 529, 225–235.
CrossRef | CAS |

Doi, H. , Zuykova, E. I. , Kikuchi, E. , Shikano, S. , and Kanou, K. , et al. (2006). Spatial changes in carbon and nitrogen stable isotopes of the plankton food web in a saline lake ecosystem. Hydrobiologia 571, 395–400.
CrossRef | CAS |

Drost, H. J. , Kipriyanova, L. M. , Kovalevskaya, N. M. , Savkin, V. M. , and Dvurechenskaya, S. Y. , et al. (2002). Environmental profile Chany Lake (West Siberia). Scientific Annals of the Danube Delta Institute for Research and Development. Tulcea, Romania 2000–2001, 63–73.

France, R. L. (1995). Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Marine Ecology Progress Series 124, 307–312.
CrossRef |

Jones, J. I. , and Waldron, S. (2003). Combined stable isotope and gut contents analysis of food webs in plant-dominated, shallow lakes. Freshwater Biology 48, 1396–1407.
CrossRef |

Kanaya, G. , Takagi, S. , Nobata, E. , and Kikuchi, E. (2007). Spatial dietary shift of macrozoobenthos in a brackish lagoon revealed by carbon and nitrogen stable isotope ratios. Marine Ecology Progress Series 345, 117–127.
CrossRef | CAS |

Kanaya, G. , Takagi, S. , and Kikuchi, E. (2008). Dietary contribution of the microphytobenthos to infaunal deposit feeders in an estuarine mudflat in Japan. Marine Biology 155, 543–553.
CrossRef | CAS |

McCutchan, J. H. , Lewis, W. M. , Kendall, C. , and McGrath, C. C. (2003). Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378–390.
CrossRef | CAS |

O’Connell, M. F. , Dempson, J. B. , and Power, M. (2005). Ecology and trophic relationships of the fishes of Gander Lake, a large, deep, oligotrophic lake in Newfoundland, Canada. International Review of Hydrobiology 90, 486–510.
CrossRef |

Penttinen, O.-P. , and Holopainen, I. J. (1992). Seasonal feeding activity and ontogenetic dietary shifts in crucian carp, Carassius carassius. Environmental Biology of Fishes 33, 215–221.
CrossRef |

Perga, M. E. , and Gerdeaux, A. D. (2005). ‘Are fish what they eat’ all year round? Oecologia 144, 598–606.
CrossRef | CAS | PubMed |

Phillips, D. L. , and Gregg, J. W. (2003). Source partitioning using stable isotopes: coping with too many sources. Oecologia 136, 261–269.
CrossRef | PubMed |

Schindler, D. E. , and Scheuerell, M. D. (2002). Habitat coupling in lake ecosystems. Oikos 98, 177–189.
CrossRef |

Specziár, A. , Tölg, L. , and Bíró, P. (1997). Feeding strategy and growth of cyprinids in the littoral zone of Lake Balaton. Journal of Fish Biology 51, 1109–1124.

Syväranta, J. , Hämäläinen, H. , and Jones, R. I. (2006). Within-lake variability in carbon and nitrogen stable isotope signatures. Freshwater Biology 51, 1090–1102.
CrossRef |

Vadeboncoeur, Y. , Lodge, D. M. , and Carpenter, S. R. (2001). Whole-lake fertilization effects on distribution of primary production between benthic and pelagic habitats. Ecology 82, 1065–1077.

Vander Zanden, M. J. , and Vadeboncoeur, Y. (2002). Fishes as integrators of benthic and pelagic food webs in lakes. Ecology 83, 2152–2161.
CrossRef |

Vander Zanden, M. J. , Chandra, S. , Park, S.-K. , Vadeboncoeur, Y. , and Goldman, C. R. (2006). Efficiencies of benthic and pelagic trophic pathways in a subalpine lake. Canadian Journal of Fisheries and Aquatic Sciences 63, 2608–2620.
CrossRef |

Yadrenkina E. N. (2002). Chany Lake as the model system to investigate spatial organization of fish populations. Biology Science and Education 2, 126–133. [In Russian]

Yemelyanova, A. Y. , Temerova, T. A. , and Degermendzhy, A. G. (2002). Distribution of Gammarus lacustris Sars (Amphipoda, Gammaridae) in Lake Shira (Khakasia, Siberia) and laboratory study of its growth characteristics. Aquatic Ecology 36, 245–256.
CrossRef |

Yoshii, K. (1999). Stable isotope analyses of benthic organisms in Lake Baikal. Hydrobiologia 411, 145–159.
CrossRef |

Yoshii, K. , Melnik, N. G. , Timoshkin, O. A. , Bondarenko, N. A. , and Anoshko, P. N. , et al. (1999). Stable isotope analyses of the pelagic food web in Lake Baikal. Limnology and Oceanography 44, 502–511.

Rent Article (via Deepdyve) Export Citation Cited By (3)