Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Optimising sample volume and replicates using the Bou-Rouch method for the rapid assessment of hyporheic fauna

Samuel Kibichii A B , Jan-Robert Baars A and Mary Kelly-Quinn A
+ Author Affiliations
- Author Affiliations

A Freshwater Biodiversity, Ecology and Fisheries Research Group, School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland.

B Corresponding author. Email: Samuel.Kibichii@ucd.ie

Marine and Freshwater Research 60(1) 83-96 https://doi.org/10.1071/MF08172
Submitted: 5 June 2008  Accepted: 15 September 2008   Published: 29 January 2009

Abstract

Despite the widespread use of the Bou-Rouch method in obtaining hyporheic samples in ecological studies, problems persist in comparing data because of differences in volume and number of samples taken in various studies. Towards standardising this method, we conducted a study in the Delour River, Ireland, between March and September 2006. The hyporheic habitat was divided into three lateral zones: the flowing stream (SS); the stream–terrestrial ecotone (EC); and the terrestrial margin (TM). Between 3 and 6 random insertions of the stand pipe were made into the hyporheic habitat at 0.2 m and 0.5 m in each zone. Ten consecutive 1-L samples were pumped at each point to determine an optimum sample volume and replicates needed to estimate taxon richness and abundance. The optimum sample combinations range between 6 and 15 3- to 10-L samples depending on depth and habitat zone. Our results show that both spatial and temporal scales are important factors in considering the optimum combinations of sample volume and number of independent spatial replicates needed to sample stream hyporheos, with the zone closer to the flowing stream requiring many small-volume samples whereas areas further away towards the alluvial groundwater need larger volumes with small numbers of replicates.

Additional keywords: cumulative taxon richness and abundance, groundwater, hyporheos, randomised taxon accumulation curves.


Acknowledgements

This work was possible with the kind help of many people in the Freshwater Biodiversity, Ecology & Fisheries Research Laboratory, School of Biology and Environmental Science, University College, Dublin and we are grateful for their help. Particularly, we thank Maria Callanan, Dr Gustavo Beccera, Joe Kavanagh, Hugh Feeley, Colm O’Keane and Gwendoline Mangwi for their occasional help with fieldwork. This study was funded as part of the ECOTONE PROJECT by Science Foundation Ireland. Prof. Andrew Boulton read and suggested changes to the original draft of this paper and we are very grateful for his help. We also wish to thank our reviewers for their constructive comments that helped to improve our earlier drafts.


References

Bady, P. , Doledec, S. , Fesl, C. , Gayraud, S. , Bacchi, M. , and Scholl, F. (2005). Use of invertebrate traits for the biomonitoring of European large rivers: the effects of sampling effort on genus richness and functional diversity. Freshwater Biology 50, 159–173.
CrossRef |

Bou, C. , and Rouch, R. (1967). Un nouveau champ de recherches sur la faune aquatique souterraine. Comptes Rendus des Seances de l’Academie des Sciences. Serie III, Sciences de la Vie 265, 369–370.


Boulton, A. J. (2007). Hyporheic rehabilitation in rivers: restoring vertical connectivity. Freshwater Biology 52, 632–650.
CrossRef |

Boulton, A. J. , Valett, H. M. , and Fisher, S. G. (1992). Spatial distribution and taxonomic composition of the hyporheos of several Sonoran Desert streams. Archiv fuer Hydrobiologie 125, 37–61.


Boulton, A. J. , Findlay, S. , Marmonier, P. , Stanley, E. H. , and Valett, H. M. (1998). The functional significance of the hyporheic zone in streams and rivers. Annual Review of Ecology and Systematics 29, 59–81.
CrossRef |

Boulton, A. J. , Dole-Olivier, M.-J. , and Marmonier, P. (2003). Optimizing a sampling strategy for assessing hyporheic invertebrate biodiversity using the Bou-Rouch method: within-site replication and sample volume. Archiv fuer Hydrobiologie 156, 431–456.


Boulton, A. J. , Dole-Olivier, M.-J. , and Marmonier, P. (2004). Effects of sample volume and taxonomic resolution on assessment of hyporheic assemblage composition sampled using a Bou-Rouch pump. Archiv fuer Hydrobiologie 159, 327–355.
CrossRef |

Bowman J. (1991). ‘Acid Sensitive Surface Waters in Ireland: the Impact of a Major New Sulphur Emission on Sensitive Surface Waters in an Un-acidified Region.’ (Environmental Research Unit, Dun Laoghairre, Co.: Dublin.)

Bretschko, G. (1990). The escape reactions on the quantitative sampling of gravel stream fauna. Archiv fuer Hydrobiologie 120, 41–49.


Chao, A. (1987). Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43, 783–791.
CrossRef | CAS | PubMed |

Colwell R. K. (2006). EstimateS: statistical estimation of species richness and shared species from samples software (Win 8). University of Connecticut, Storrs, CT.

Colwell, R. K. , and Coddington, J. A. (1994). Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 345, 101–118.
CrossRef | CAS | PubMed |

Danielopol, D. L. (1976). The distribution of the fauna in the interstitial habitats of riverine sediments of the Danube and the Pisting (Austria). International Journal of Speleology 8, 23–25.


Danielopol, D. L. , Pospisil, P. , and Rouch, R. (2000). Biodiversity in groundwater: a large scale view. Trends in Ecology & Evolution 15, 223–224.
CrossRef |

Datry, T. , Larned, S. T. , and Scarsbrook, M. R. (2007). Responses of hyporheic invertebrate assemblages to large-scale variation in flow permanence and surface–subsurface exchange. Freshwater Biology 52, 1452–1462.
CrossRef |

Dole-Olivier, M.-J. , Marmonier, P. , and Beffy, J.-L. (1997). Response of invertebrates to lotic disturbance: is the hyporheic zone a patchy refugium? Freshwater Biology 37, 257–276.
CrossRef |

Elliott J. M. (1977). ‘Some Methods for the Statistical Analysis of Samples of Benthic Invertebrates.’ 2nd edn. Freshwater Biological Association Scientific Publication No. 25. (Ferry House: Cumbria, UK.)

Environmental Protection Agency (2005). River Water Quality Report. Available at: http://www.epa.ie/downloads/pubs/water/rivers/name,13530,en.html [Accessed 1 November 2005].

Fowler, R. T. , and Death, R. G. (2001). The effect of environmental stability on hyporheic community structure. Hydrobiologia 445, 85–95.
CrossRef |

Fraser, B. G. , and Williams, D. D. (1997). Accuracy and precision in sampling hyporheic fauna. Canadian Journal of Fisheries and Aquatic Sciences 54, 1135–1141.
CrossRef |

Gotelli, N. J. , and Colwell, R. K. (2001). Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4, 379–391.
CrossRef |

Halse, S. A. , Cale, D. J. , Jasinska, E. J. , and Shiel, R. J. (2002). Monitoring change in aquatic invertebrate biodiversity: sample size, faunal elements and analytical methods. Aquatic Ecology 36, 395–410.
CrossRef |

Hunt, G. W. , and Stanley, E. H. (2000). An evaluation of alternative procedures using the Bou-Rouch method for sampling hyporheic invertebrates. Canadian Journal of Fisheries and Aquatic Sciences 57, 1545–1550.
CrossRef |

James, A. B. W. , Dewson, Z. S. , and Death, R. G. (2008). Do stream macroinvertebrates use instream refugia in response to severe short-term flow reduction in New Zealand streams? Freshwater Biology 53, 1316–1334.
CrossRef |

Kibichii, S. , Baars, J.-R. , and Kelly-Quinn, M. (2008). Vertical and lateral patterns in hydrochemical characteristics of the hyporheic habitats of the Delour River, Co. Laois, Ireland. Verhandlungen – Internationale Vereinigung für Theoretische und Angewandte Limnologie 30, 60–64.
CAS |

Magurran A. E. (2004). ‘Measuring Biological Diversity.’ (Blackwell Publishing: Oxford.)

Malard, F. , Tockner, K. , Dole-Olivier, M.-J. , and Ward, J. V. (2002). A landscape perspective of surface–subsurface hydrological exchanges in river corridors. Freshwater Biology 47, 621–640.
CrossRef |

Malard, F. , Galassi, D. , Lafont, M. , Dolédec, S. , and Ward, J. V. (2003). Longitudinal patterns of invertebrates in the hyporheic zone of a glacial river. Freshwater Biology 48, 1709–1725.
CrossRef | CAS |

Mermillod-Blondin, F. , Cruezé des Châttelliers, M. , Marmonier, P. , and Dole-Olivier, M.-J. (2000). Distribution of solutes, microbes and invertebrates in river sediments along a riffle-pool-riffle sequence. Freshwater Biology 44, 255–269.
CrossRef | CAS |

Palmer, M. A. , Belly, A. E. , and Berg, K. E. (1992). Response of invertebrates to lotic disturbance: a test of the hyporheic refuge hypothesis. Oecologia 89, 182–194.


Pretty, J. L. , Hildrew, A. G. , and Trimmer, M. (2006). Nutrient dynamics in relation to surface–subsurface hydrological exchange in a groundwater fed chalk stream. Journal of Hydrology (Amsterdam) 330, 84–100.
CrossRef | CAS |

Scarsbrook, M. R. , and Halliday, J. (2002). Detecting patterns in hyporheic community structure: Does sampling method alter the story? New Zealand Journal of Marine and Freshwater Research 36, 443–453.


Somers, K. M. , Reid, R. A. , and David, S. M. (1998). Rapid biological assessments: how many animals are enough? Journal of the North American Benthological Society 17, 348–358.
CrossRef |

Storey, R. G. , and Williams, D. D. (2004). Spatial responses of hyporheic invertebrates to seasonal changes in environmental parameters. Freshwater Biology 49, 1468–1486.
CrossRef |

Strayer, D. L. , and Reid, J. W. (1992). Distribution of hyporheic cyclopoids (Crustacea: Copepoda) in the eastern United States. Archiv fuer Hydrobiologie 145, 79–92.


Strommer, J. L. , and Smock, L. A. (1989). Vertical distribution and abundance of invertebrates within the sandy substrate of a low-gradient headwater stream. Freshwater Biology 22, 263–274.
CrossRef |

Swan, C. M. , and Palmer, M. A. (2000). What drives small-scale spatial patterns in lotic meiofaunal communities? Freshwater Biology 44, 109–121.
CrossRef |

Trayler, K. M. , and Davis, J. A. (1998). Forestry impacts and the vertical distribution of stream invertebrates in south-western Australia. Freshwater Biology 40, 331–342.
CrossRef |

Ward, J. V. (1989). The four-dimensional nature of lotic ecosystems. Journal of the North American Benthological Society 8, 2–8.
CrossRef |

Williams, D. D. (1989). Towards a biological and chemical definition of the hyporheic zone in two Canadian rivers. Freshwater Biology 22, 189–208.
CrossRef | CAS |

Williams, D. D. , and Hynes, H. B. N. (1974). The occurrence of benthos deep in the substratum of a stream. Freshwater Biology 4, 233–256.
CrossRef |

Zar J. H. (1996). ‘Biostatistical Analysis.’ 2nd edn. (Prentice Hall: Upper Saddle River, NJ.)



Rent Article (via Deepdyve) Export Citation Cited By (13)