Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
REVIEW

Calcified macroalgae – critical to coastal ecosystems and vulnerable to change: a review

W. A. Nelson
+ Author Affiliations
- Author Affiliations

National Institute of Water & Atmospheric Research, Private Bag 14-901, Wellington 6241, New Zealand. Email: w.nelson@niwa.co.nz

Marine and Freshwater Research 60(8) 787-801 https://doi.org/10.1071/MF08335
Submitted: 3 December 2008  Accepted: 8 February 2009   Published: 27 August 2009

Abstract

Calcified macroalgae are distributed in marine habitats from polar to tropical latitudes and from intertidal shores to the deepest reaches of the euphotic zone. These algae play critical ecological roles including being key to a range of invertebrate recruitment processes, functioning as autogenic ecosystem engineers through provision of three-dimensional habitat structure, as well as contributing critical structural strength in coral reef ecosystems. Calcified macroalgae contribute significantly to the deposition of carbonates in coastal environments. These organisms are vulnerable to human-induced changes resulting from land and coastal development, such as altered patterns of sedimentation, nutrient enrichment through sewage and agricultural run-off, and are affected by coastal dredging and aquaculture. The consequences of increasing sea surface temperatures and fundamental changes in the carbon chemistry of seawater due to CO2 emissions from anthropogenic activities will have serious impacts on calcifying macroalgae. It is not yet understood how interactions between a range of variables acting at local and global scales will influence the viability of calcifying macroalgae and associated ecosystems. Research is urgently needed on all aspects of the taxonomy, biology and functional ecology of calcifying macroalgae. Without an understanding of the species present, measurement of change and understanding species-specific responses will not be possible.

Additional keywords: calcified green algae, carbonate deposition, Corallinales, ecosystem engineers, invertebrate recruitment, maerl, ocean acidification, rhodoliths.


Acknowledgements

This review was prepared with funding from the New Zealand Foundation for Research Science and Technology contract C01X0502 and Capability Funding CRCR093. The author thanks Chris Hepburn, Judy Broom and Tracy Farr for advice, and Andrew Boulton, Mike Foster and an anonymous referee for constructive comments. John Huisman, Sean Cooper, Debbie Freeman and Kate Neill are thanked for the images.


References

Adey, W. H. (1998). Coral reefs: Algal structured and mediated ecosystems in shallow, turbulent, alkaline waters. Journal of Phycology 34, 393–406.
CrossRef |

Amado-Filho, G. M. , Maneveldt, G. , Manso, R. C. C. , Marins-Rosa, B. V. , and Pacheco, M. R. , et al. (2007). Structure of rhodolith beds from 4 to 55 meters deep along the southern coast of Espírito Santo State, Brazil. Ciencias Marinas 33, 399–410.


Andersson, A. J. , Bates, N. R. , and Mackenzie, F. T. (2007). Dissolution of carbonate sediments under rising pCO2 and ocean acidification: observations from Devil’s Hole, Bermuda. Aquatic Geochemistry 13, 237–264.
CrossRef | CAS |

Anthony, K. R. N. , Kline, D. I. , Diaz-Pulido, G. , Dove, S. , and Hoegh-Guldberg, O. (2008). Ocean acidification causes bleaching and productivity loss in coral reef builders. Proceedings of the National Academy of Sciences of the United States of America 105, 17442–17446.
CrossRef | CAS | PubMed |

Barbera, C. , Bordehore, C. , Borg, J. A. , Glémarec, M. , and Grall, J. , et al. (2003). Conservation and management of northeast Atlantic and Mediterranean maerl beds. Aquatic Conservation: Marine & Freshwater Ecosystems 13, S65–S76.
CrossRef |

Basso, D. (1998). Deep rhodolith distribution in the Pontian Islands, Italy: a model for the paleoecology of a temperate sea. Palaeogeography, Palaeoclimatology, Palaeoecology 137, 173–187.
CrossRef |

Belliveau, S. A. , and Paul, V. J. (2002). Effects of herbivory and nutrients on the early colonization of crustose coralline and fleshy algae. Marine Ecology Progress Series 232, 105–114.
CrossRef |

Bjork, M. , Mohammed, S. , Bjorkland, M. , and Semsi, A. (1995). Coralline algae, important coral reef builders threatened by pollution. Ambio 24, 502–505.


Blair, S. M. , and Norris, J. N. (1988). The deep-water species of Halimeda Lamouroux (Halimediaceae, Chlorophyta) from San Salvador Island, Bahamas: species composition, distribution and depth records. Coral Reefs 6, 227–236.
CrossRef |

Blake, C. , and Maggs, C. A. (2003). Comparative growth rates and internal banding periodicity of maerl species (Corallinales, Rhodophyta) from northern Europe. Phycologia 42, 606–612.


Blake, C. , Maggs, C. , and Reimer, P. (2007). Use of radiocarbon dating to interpret past environments of maerl beds. Ciencias Marinas 33, 385–397.


Blanchon, P. , Jones, B. , and Kalbfleisch, W. (1997). Anatomy of a fringing reef around Grand Cayman: storm rubble, not coral framework. Journal of Sedimentary Research 67, 1–16.


Bohm, L. , Schramm, W. , and Rabsch, U. (1978). Ecological and physiological aspects of some coralline algae from the Western Baltic. Calcium uptake and skeleton formation in Phymatolithon calcareum. Kieler Meeresforschungen 4, 282–288.


Bordehore, C. , Ramos-Esplá, A. A. , and Riosmena-Rodríguez, R. (2003). Comparative study of two maerl beds with different otter trawling history, southeast Iberian Peninsula. Aquatic Conservation: Marine & Freshwater Ecosystems 13, S43–S54.
CrossRef |

Bosence, D. W. J. (1983). Coralline algal reef frameworks. Journal of the Geological Society 140, 365–376.
CrossRef |

Bosence, D. , and Wilson, J. (2003). Maerl growth, carbonate production rates and accumulation rates in the northeast Atlantic. Aquatic Conservation: Marine & Freshwater Ecosystems 13, S21–S31.
CrossRef |

Bosence, D. W. J. , Rowlands, R. , and Quine, M. J. (1985). Sedimentology and budget of a recent carbonate mound, Florida Keys. Sedimentology 32, 317–343.
CrossRef |

Briand X. (1991). Seaweed harvesting in Europe. In ‘Seaweed Resources in Europe: Uses and Potential’. (Eds M. D. Guiry and G. Blunden.) pp. 293–308. (Wiley: London.)

Broom, J. E. S. , Hart, D. R. , Farr, T. J. , Nelson, W. A. , and Neill, K. F. , et al. (2008). Utility of psbA and nSSU for phylogenetic reconstruction in the Corallinales based on New Zealand taxa. Molecular Phylogenetics and Evolution 46, 958–973.
CrossRef | CAS | PubMed |

Brown, P. J. , and Taylor, R. B. (1999). Effects of trampling by humans on animals inhabiting coralline algal turf in the rocky intertidal. Journal of Experimental Marine Biology and Ecology 235, 45–53.
CrossRef |

Cabioch, J. (1969). Les fonds de maërl de la baie de Morlaix et leur peuplement végétal. Cahiers de Biologie Marine 10, 139–161.


Carannante, G. , Esteban, M. , Milliman, J. D. , and Simone, L. (1988). Carbonate lithofacies as paleolatitude indicators: problems and limitations. Sedimentary Geology 60, 333–346.
CrossRef |

Chapman, M. G. , People, J. , and Blockley, D. (2005). Intertidal assemblages associated with natural Corallina turf and invasive mussel beds. Biodiversity and Conservation 14, 1761–1776.
CrossRef |

Chave, K. , and Wheeler, B. D. (1965). Mineralogic changes during growth in the red alga, Clathromorphum compactum. Science 147, 621.
CrossRef | CAS | PubMed |

Chisholm, J. R. M. (2003). Primary productivity of reef-building crustose coralline algae. Limnology and Oceanography 48, 1376–1387.


Chittaro, P. M. (2004). Fish-habitat associations across multiple spatial scales. Coral Reefs 23, 235–244.
CrossRef |

Cintra-Buenrostro, C. E. , Foster, M. S. , and Meldahl, K. H. (2002). Response of nearshore marine assemblages to global change: a comparison of molluscan assemblages in Pleistocene and modern rhodolith beds in the southwestern Gulf of California, México. Palaeogeography, Palaeoclimatology, Palaeoecology 183, 299–320.
CrossRef |

Daleo, P. , Escapa, M. , Alberti, J. , and Iribarne, O. (2006). Negative effects of an autogenic ecosystem engineer: interactions between coralline turf and an ephemeral green alga. Marine Ecology Progress Series 315, 67–73.
CrossRef |

Daume, S. , Brand-Gardner, S. , and Woelkerling, W. J. (1999). Settlement of abalone larvae (Haliotis laevigata Donovan) in response to nongeniculate coralline red algae (Corallinales, Rhodophyta). Journal of Experimental Marine Biology and Ecology 234, 125–143.
CrossRef |

Davies, P. J. , Braga, J. C. , Lund, M. , and Webster, J. M. (2004). Holocene deep water algal buildups on the Eastern Australian shelf. Palaios 19, 598–609.
CrossRef |

De Grave S., Fazakerley H., Kelly L., Guiry M. D., Ryan M., et al. (2000). A study of selected maërl beds in Irish waters and their potential for sustainable extraction. Marine Institute Report IR.95.MR.019 of the Marine Research Measure, Ireland.

Diaz-Pulido G., McCook L. J., Larkum A. W. D., Lotze H. K., Raven J. A., et al. (2007). Vulnerability of macroalgae of the Great Barrier Reef to climate change. In ‘Climate Change and the Great Barrier Reef: A Vulnerability Assessment’. (Eds J. Johnson and P. Marshall), pp. 151–192. (Great Barrier Reef Marine Park Authority and Australian Greenhouse Office: Townsville.)

Doney, S. C. , Fabry, V. J. , Feely, R. A. , and Kleypas, J. A. (2009). Ocean acidification: the other CO2 problem. Annual Review of Materials Science 2009, 169–192.


Drew, E. A. , and Abel, K. M. (1988). Studies on Halimeda I. The distribution and species composition of Halimeda meadows throughout the Great Barrier Reef Province. Coral Reefs 6, 195–205.
CrossRef |

Engel, J. , and Kvitek, R. (1998). Effects of otter trawling on a benthic community in Monterey Bay National Marine Sanctuary. Conservation Biology 12, 1204–1214.
CrossRef |

Felício-Fernandes, G. , and Laranjeira, M. C. M. (2000). Calcium phosphate biomaterials from marine algae. Hydrothermal synthesis and characterisation. Quimica Nova 23, 441–446.
CrossRef |

Figueiredo, M. A. de-O. , Santos-de Menezes, K. , Costa-Paiva, E. M. , Paiva, P. C. , and Ventura, C. R. R. (2007). Experimental evaluation of rhodoliths as living substrata for infauna at the Abrolhos Bank, Brazil. Ciencias Marinas 33, 427–440.


Flügel, E. (1988). Halimeda: paleontological record and paleoenvironmental significance. Coral Reefs 6, 123–130.
CrossRef |

Foster, M. S. (2001). Rhodoliths: between rocks and soft places. Journal of Phycology 37, 659–667.
CrossRef |

Foster, M. S. , Riosmena-Rodríguez, R. , Steller, D. L. , and Woelkerling, W. J. (1997). Living rhodolith beds in the Gulf of California and their implications for paleoenvironmental interpretation. Geological Society of America Bulletin 318, 127–139.


Foster, M. S. , McConnico, L. M. , Lundsten, L. , Wadsworth, T. , and Kimball, T. , et al. (2007). Diversity and natural history of a Lithothamnion muelleriSargassum horridum community in the Gulf of California. Ciencias Marinas 33, 367–384.


Frantz, B. R. , Kashgarian, M. , Coale, K. H. , and Foster, M. S. (2000). Growth rate and potential climate record from a rhodolith using 14C accelerator mass spectrometry. Limnology and Oceanography 45, 1773–1777.


Frantz, B. R. , Foster, M. S. , and Riosmena-Rodríguez, R. (2005). Clathromorphum nereostratum (Corallinales, Rhodophyta): the oldest alga? Journal of Phycology 41, 770–773.
CrossRef |

Freiwald, A. (1998). Modern nearshore cold-temperate calcareous sediments in the Troms districts, northern Norway. Journal of Sedimentary Research 68, 763–776.


Freiwald, A. , Henrich, R. , Schafer, P. , and Willkomm, H. (1991). The significance of high boreal to subarctic maerl deposits in northern Norway to reconstruct Holocene climatic changes and sea level oscillations. Facies 25, 315–339.
CrossRef |

Gao, K. , Aruga, Y. , Asada, K. , Ishihara, T. , Akano, T. , and Kiyohara, M. (1993). Calcification in the articulated coralline alga Corallina pilulifera, with special reference to the effect of elevated CO2 concentration. Marine Biology 117, 129–132.
CrossRef | CAS |

Goldberg, N. (2006). Age estimates and description of rhodoliths from Esperance Bay, Western Australia. Journal of the Marine Biological Association of the United Kingdom 86, 1291–1296.
CrossRef |

Grall, J. , and Glemarec, M. (1997). Biodiversity of maerl beds in Brittany: Functional approach and anthropogenic impact. Vie et Milieu 47, 339–349.


Grall, J. , and Hall-Spencer, J. M. (2003). Problems facing maerl conservation in Brittany. Aquatic Conservation: Marine & Freshwater Ecosystems 13, S55–S64.
CrossRef |

Grall, J. , Le Loc’h, F. , Guyonnet, B. , and Riera, P. (2006). Community structure and food web based on stable isotopes (δ15N and δ13C) analyses of a North Eastern Atlantic maerl bed. Journal of Experimental Marine Biology and Ecology 338, 1–15.
CrossRef | CAS |

Guiry M. D., and Guiry G. M. (2008). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available at http://www.algaebase.org [Accessed 24 November 2008].

Halfar, J. , Zack, T. , Kronz, A. , and Zachos, J. C. (2000). Growth and high-resolution paleoenvironmental signals of rhodoliths (coralline red algae): a new biogenic archive. Journal of Geophysical Research 105, 22107–22116.
CrossRef | CAS |

Halfar, J. , Godinez-Orta, L. , Mutti, M. , Valdez-Holguin, J. E. , and Borges, J. M. (2006). Carbonates calibrated against oceanographic parameters along a latitudinal transect in the Gulf of California, México. Sedimentology 53, 297–320.
CrossRef |

Halfar, J. , Steneck, R. , Schone, B. R. , Moore, G. W. K. , and Joachimski, M. M. , et al. (2007). Coralline alga reveals first marine record of subarctic North Pacific climate change. Geophysical Research Letters 34, L07702.
CrossRef |

Halfar, J. , Steneck, R. S. , Joachimski, M. , Kronz, A. , and Wanamaker, A. D. (2008). Coralline red algae as high-resolution climate recorders. Geology 36, 463–466.
CrossRef | CAS |

Hall-Spencer, J. , and Moore, P. G. (2000). Scallop dredging has profound, long-term impacts on maerl habitats. ICES Journal of Marine Science 57, 1407–1415.
CrossRef |

Hall-Spencer, J. , Grall, J. , Moore, P. G. , and Atkinson, R. J. A. (2003). Bivalve fishing and maërl-bed conservation in France and the UK – retrospect and prospect. Aquatic Conservation: Marine & Freshwater Ecosystems 13, 33–41.
CrossRef |

Hall-Spencer, J. , White, N. , Gillespie, E. , Gillham, K. , and Foggo, A. (2006). Impact of fish farms on maerl beds in strongly tidal areas. Marine Ecology Progress Series 326, 1–9.
CrossRef |

Hall-Spencer J., Kelly J., and Maggs C. A. (2008a). Assessment of maerl beds in the OSPAR area and the development of a monitoring program. (Department of Environment, Heritage and Local Government: Ireland.)

Hall-Spencer, J. M. , Rodolfo-Metalpa, R. , Martin, S. , Ransome, E. , and Fine, M. , et al. (2008b). Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454, 96–99.
CrossRef | CAS | PubMed |

Harrington, L. , Fabricius, K. , De’ath, D. , and Negri, A. (2004). Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecology 85, 3428–3437.
CrossRef |

Hart, D. E. , and Kench, P. S. (2007). Carbonate production of an emergent reef platform, Warraber Island, Torres Strait, Australia. Coral Reefs 26, 53–68.
CrossRef |

Harvey, A. S. , and Bird, F. L. (2008). Community structure of a rhodolith bed from cold temperate waters (southern Australia). Australian Journal of Botany 56, 437–450.
CrossRef |

Harvey A. S., Woelkerling W. J., Farr T. J., Neill K. F. and Nelson W. A. (2005). Coralline algae of central New Zealand: An identification guide to common ‘crustose’ species. In ‘NIWA Information Series Vol. 57’. (Wellington: New Zealand.)

Hetzinger, S. , Halfar, J. , Riegl, B. , and Godinez-Orta, L. (2006). Sedimentology and acoustic mapping of modern rhodolith facies on a non-tropical carbonate shelf (Gulf of California, Mexico). Journal of Sedimentary Research 76, 670–682.
CrossRef |

Heyward, A. J. , and Negri, A. P. (1999). Natural inducers for coral larval metamorphosis. Coral Reefs 18, 273–279.
CrossRef |

Hicks, G. R. F. (1971). Check list and ecological notes on the fauna associated with some littoral corallinaceae algae. Bulletin of Natural Science 2, 47–58.


Hicks G. R. F. (1986). Meiofauna associated with rocky shore algae. In ‘The Ecology of Rocky Coasts’. (Eds P. G. Moore and R. Seed) pp. 36–56. (Hodder and Stoughton: London.)

Hinojosa-Arango, G. , and Riosmena-Rodríguez, R. (2004). Influence of rhodolith forming species and growth-form on associated fauna of rhodolith beds in the Central-West Gulf of California, México. Marine Ecology (Berlin) 25, 109–127.
CrossRef |

Iryu, Y. , Nakamori, T. , Matsuda, S. , and Abe, O. (1995). Distribution of marine organisms and its geological significance in the modern reef complex of the Ryukyu Islands. Sedimentary Geology 99, 243–258.
CrossRef |

Jackson, J. B. C. (2008). Ecological extinction and evolution in the brave new ocean. Proceedings of the National Academy of Sciences of the United States of America 105, 11458–11465.
CrossRef | CAS | PubMed |

Jokiel, P. L. , Rodgers, K. S. , Kuffner, I. B. , Andersson, A. J. , Cox, E. F. , and Mackenzie, F. T. (2008). Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs 27, 473–483.
CrossRef |

Jones, C. G. , Lawton, J. H. , and Shachak, M. (1994). Organisms as ecosystem engineers. Oikos 69, 373–386.
CrossRef |

Kamenos, N. A. , Moore, P. G. , and Hall-Spencer, J. M. (2003). Substratum heterogeneity of dredged vs un-dredged maerl grounds. Journal of the Marine Biological Association of the United Kingdom 83, 411–413.
CrossRef |

Kamenos, N. A. , Moore, G. P. , and Hall-Spencer, J. M. (2004a). Small-scale distribution of juvenile gadoids in shallow inshore waters; what role does maerl play? ICES Journal of Marine Science 61, 422–429.
CrossRef |

Kamenos, N. A. , Moore, G. P. , and Hall-Spencer, J. M. (2004b). Nursery-area function of maerl grounds for juvenile queen scallops Aequipecten opercularis and other invertebrates. Marine Ecology Progress Series 274, 183–189.
CrossRef |

Kamenos, N. A. , Cusack, M. , and Moore, P. G. (2008). Coralline algae are global palaeothermometers with bi-weekly resolution. Geochimica et Cosmochimica Acta 72, 771–779.
CrossRef | CAS |

Kao, S. , and Scott, D. (2007). A review of bone substitutes. Oral and Maxillofacial Surgery Clinics of North America 19, 513–521.
CrossRef | PubMed |

Kasperk, C. , Ewers, R. , Simons, B. , and Kasperk, R. (1988). Algae-derived (phycogene) hydrocylapatite: a comparative histological study. International Journal of Oral and Maxillofacial Surgery 17, 319–324.
CAS | PubMed |

Keegan, B. F. (1974). The macrofauna of maerl substrates on the west coast of Ireland. Cahiers de Biologie Marine 15, 513–530.


Kelaher, B. P. (2002). Influence of physical characteristics of coralline turf on associated macrofaunal assemblages. Marine Ecology Progress Series 232, 141–148.
CrossRef |

Kelaher, B. P. , Castilla, J. C. , and Seed, R. (2004). Intercontinental test of generality for spatial patterns among diverse molluscan assemblages in coralline algal turf. Marine Ecology Progress Series 271, 221–231.
CrossRef |

Kempf, M. (1970). Notes of the benthic bionomy of the N-NE Brazilian shelf. Marine Biology 5, 213–224.
CrossRef |

Konar, B. , Riosmena-Rodriguez, R. , and Iken, K. (2006). Rhodolith bed: a newly discovered habitat in the North Pacific Ocean. Botanica Marina 49, 355–359.
CrossRef |

Kuffner, I. B. , Andersson, A. J. , Jokiel, P. L. , Rodgers, K. S. , and Mackenzie, F. T. (2007). Decreased abundance of crustose coralline algae due to ocean acidification. Nature Geoscience 1, 114–117.
CrossRef |

Langdon, C. (2002). Review of experimental evidence for effects of CO2 on calcification of reef-builders. Proceedings of the 9th International Coral Reef Symposium 2, 1091–1098.
CrossRef |

Lee, D. , and Carpenter, S. J. (2001). Isotopic disequilibrium in marine calcareous algae. Chemical Geology 172, 307–329.
CrossRef | CAS |

Littler, M. M. (1973). The population and community structure of Hawaiian fringing-reef crustose Corallinaceae (Rhodophyta, Cryptonemiales). Journal of Experimental Marine Biology and Ecology 11, 103–120.
CrossRef |

Littler M. M., and Littler D. S. (1984). Models of tropical reef biogenesis: the contribution of algae. In ‘Progress in Phycological Research, Vol. 3’. (Eds F. E. Round and D. J. Chapman.) pp. 323–364. (Biopress: Bristol.)

Littler, M. M. , and Littler, D. (2007). Assessment of coral reefs using herbivory/nutrient assays and indicator groups of benthic primary producers: a critical synthesis, proposed protocols, and a critique of management strategies. Aquatic Conservation: Marine & Freshwater Ecosystems 17, 195–215.
CrossRef |

Littler, M. M. , Littler, D. S. , Blair, S. M. , and Norris, J. N. (1985). Deepest known plant life discovered on an uncharted seamount. Science 227, 57–59.
CrossRef | PubMed |

Littler, M. M. , Littler, D. , and Hanisak, M. D. (1991). Deep-water rhodolith distribution, productivity, and growth history at sites of formation and subsequent degradation. Journal of Experimental Marine Biology and Ecology 150, 163–182.
CrossRef |

Liuzzi, M. G. , and Gappa, J. L. (2008). Macrofaunal assemblages associated with coralline turf: species turnover and changes in structure at different spatial scales. Marine Ecology Progress Series 363, 147–156.
CrossRef |

Lobban C., and Harrison P. J. (1994). ‘Seaweed Ecology and Physiology’. (Cambridge University Press, Cambridge.)

Lund, M. , Davies, P. J. , and Braga, J. C. (2000). Coralline algal nodules off Fraser Island, eastern Australia. Facies 42, 25–34.
CrossRef |

Maliao, R. J. , Turingan, R. G. , and Lin, J. (2008). Phase-shift in coral reef communities in the Florida Keys National Marine Sanctuary (FKNMS), USA. Marine Biology 154, 841–853.
CrossRef |

Marrack, E. C. (1999). The relationship between water motion and living rhodolith beds in the southwestern Gulf of California, Mexico. Palaios 14, 159–171.
CrossRef |

Marshall, J. F. , and Davies, P. J. (1988). Halimeda bioherms of the northern Great Barrier Reef. Coral Reefs 6, 139–148.
CrossRef |

McConnaughey, T. (1998). Acid secretion, calcification, and photosynthetic carbon concentrating mechanisms. Canadian Journal of Botany 76, 1119–1126.
CrossRef | CAS |

McConnaughey, T. A. , and Whelan, J. F. (1997). Calcification generates protons for nutrient and bicarbonate uptake. Earth-Science Reviews 42, 95–117.
CrossRef | CAS |

Milliman J. D. (1977). Role of calcareous algae in Atlantic continental margin sedimentation. In ‘Fossil Algae: Recent Results and Developments’. (Ed. E. Flugel) pp. 232–247. (Springer Verlag: Berlin.)

Morse, A. N. C. (1991). How do planktonic larvae know where to settle? American Scientist 79, 154–167.


Morse, D. E. , and Morse, A. N. C. (1991). Enzymatic characterisation of the morphogen recognized by Agaricia humilis (scleratinian coral) larvae. The Biological Bulletin 181, 104–122.
CrossRef |

Morse, A. N. C. , Iwao, K. , Baba, M. , Shimoike, K. , Hayashibara, T. , and Omori, M. (1996). An ancient chemosensory mechanism brings new life to coral reefs. The Biological Bulletin 191, 149–154.
CrossRef |

Morse, J. W. , Andersson, A. J. , and Mackenzie, F. T. (2006). Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and ocean acidification: role of high Mg-calcites. Geochimica et Cosmochimica Acta 70, 5814–5830.
CrossRef | CAS |

Moss, G. A. (1999). Factors affecting settlement and early post-settlement survival of the New Zealand abalone Haliotis iris. New Zealand Journal of Marine and Freshwater Research 33, 271–278.


Nalin, R. , Nelson, C. S. , Basso, D. , and Massari, F. (2008). Rhodolith-bearing limestones as transgressive marker beds: fossil and modern examples from North Island, New Zealand. Sedimentology 55, 249–274.
CrossRef |

Nebelsick, J. H. , and Bassi, D. (2000). Diversity, growth forms and taphonomy: key factors controlling the fabric of coralline algae dominated shelf carbonates. Geological Society of London 178, 89–107.
CrossRef |

Nelson, C. S. (1988). An introductory perspective on non-tropical shelf carbonates. Sedimentary Geology 60, 3–12.
CrossRef |

Oliveira, J. M. , Grech, J. M. R. , Leonor, I. B. , Mano, J. F. , and Reis, R. L. (2007). Calcium-phosphate derived from mineralized algae for bone tissue engineering applications. Materials Letters 61, 3495–3499.
CrossRef | CAS |

Payri, C. E. (1988). Halimeda contribution to organic and inorganic production in a Tahitian reef system. Coral Reefs 6, 251–262.
CrossRef |

Payri, C. E. (1997). Hydrolithon reinboldii rhodolith distribution, growth and carbon production of a French Polynesian reef. Proceedings of the 8th International Coral Reef Symposium 1, 755–760.
CrossRef | CAS |

Payri, C. E. , and Cabioch, G. (2004). The systematics and significance of coralline red algae in the rhodolith sequence of the Amédée 4 drill core (Southwest New Caledonia). Palaeogeography, Palaeoclimatology, Palaeoecology 204, 187–208.
CrossRef |

Pedley, M. , and Carannante, G. (2006). Cool-water carbonate ramps: a review. Geological Society of London. Special Publications 255, 1–9.
CrossRef |

Peña, V. , and Bárbara, I. (2008). Maërl community in the north-western Iberian Peninsula: a review of floristic studies and long term changes. Aquatic Conservation: Marine & Freshwater Ecosystems 18, 339–366.
CrossRef |

Potin, P. , Floc’h, J. Y. , Augris, C. , and Cabioch, J. (1990). Annual growth rate of the calcareous red alga Lithothamnion coralloides (Corallinales, Rhodophyta) in the Bay of Brest, France. Hydrobiologia 204–205, 263–267.
CrossRef |

Raimondi, P. T. , and Morse, A. N. C. (2000). The consequences of complex larval behaviour in a coral. Ecology 81, 3193–3211.


Riosmena-Rodríguez, R. , Woelkerling, W. , and Foster, M. S. (1999). Taxonomic reassessment of rhodolith-forming species of Lithophyllum (Corallinales, Rhodophyta) in the Gulf of California, México. Phycologia 38, 401–417.


Riul, P. , Targino, C. H. , Da Nóbrega Farias, J. , Visscher, P. T. , and Horta, P. A. (2008). Decrease in Lithothamnion sp. (Rhodophyta) primary production due to the deposition of a thin sediment layer. Journal of the Marine Biological Association of the United Kingdom 88, 17–19.
CrossRef |

Roberts, R. (2001). A review of settlement cues for larval abalone (Haliotis spp.). Journal of Shellfish Research 20, 571–586.


Roberts, R. D. , Kühl, M. , Glud, R. N. , and Rysgaard, S. (2002). Primary production of crustose coralline red algae in a high Arctic fjord. Journal of Phycology 38, 273–283.
CrossRef |

Ruiz-Zárate, M. A. , Espinoza-Avalos, J. , Carricart-Ganivet, J. P. , and Fragoso, D. (2000). Relationships between Manicina areolata (Cnidaria: Scleractinia), Thalassia testudinum (Anthophyta) and Neogoniolithon sp. (Rhodophyta). Marine Ecology Progress Series 206, 135–146.
CrossRef |

Schwarz, A.-M. , Hawes, I. , Andrew, N. , Mercer, S. , and Cummings, V. , et al. (2005). Primary production potential of non-geniculate coralline algae at Cape Evans, Ross Sea, Antarctica. Marine Ecology Progress Series 294, 131–140.
CrossRef | CAS |

Solomon S., Qin D., Manning M., Alley R. B., Berntsen T., et al. (2007). Technical Summary. In ‘Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change’. (Eds S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis et al.) (Cambridge University Press, Cambridge.)

Spalding, H. , Foster, M. S. , and Heine, J. N. (2003). Composition, distribution, and abundance of deepwater (>30 m) macroalgae in central California. Journal of Phycology 39, 273–284.


Steller, D. L. , and Foster, M. S. (1995). Environmental factors influencing distribution and morphology of rhodoliths on Bahía Concepción, B.C.S., México. Journal of Experimental Marine Biology and Ecology 194, 201–212.
CrossRef |

Steller, D. L. , Riosmena-Rodríguez, R. , Foster, M. S. , and Roberts, C. A. (2003). Rhodolith bed diversity in the Gulf of California: the importance of rhodolith structure and consequences of disturbance. Aquatic Conservation: Marine & Freshwater Ecosystems 13, S5–S20.
CrossRef |

Steller, D. L. , Hernández-Ayón, J. M. , Riosmena-Rodríguez, R. , and Cabello-Pasini, A. (2007). Effect of temperature on photosynthesis, growth and calcification rates of the free-living coralline alga Lithophyllum margaritae. Ciencias Marinas 33, 441–456.
CAS |

Steneck, R. S. , Macintyre, I. G. , and Reid, R. P. (1997). A unique ridge system in the Exuma Cays, Bahamas. Coral Reefs 16, 29–37.
CrossRef |

Stewart, J. G. (1982). Anchor species and epiphytes in intertidal algal turf. Pacific Science 36, 45–59.


Testa, V. , and Bosence, D. W. J. (1999). Physical and biological controls on the formation of carbonate and siliciclastic bedforms on the north-east Brazilian shelf. Sedimentology 46, 279–301.
CrossRef |

Tsuji, Y. (1993). Tide influenced high energy environments and rhodolith-associated carbonate deposition on the outer shelf and slope off the Miyako Islands, southern Ryukyu Island Arc, Japan. Marine Geology 113, 255–271.
CrossRef |

Wilson, S. , Blake, C. , Berges, J. A. , and Maggs, C. A. (2004). Environmental tolerances of free-living coralline algae (maerl): implications for European marine conservation. Biological Conservation 120, 279–289.
CrossRef |

Woelkerling W. J. (1988). ‘The Coralline Red Algae: An Analysis of the Genera and Subfamilies of Nongeniculate Corallinaceae’. (British Museum (Natural History) and Oxford University Press: London and Oxford.)

Woelkerling, W. J. , Irvine, L. M. , and Harvey, A. S. (1993). Growth forms in non-geniculate coralline red algae (Corallinales, Rhodophyta). Australian Systematic Botany 6, 277–293.
CrossRef |

Yabur-Pacheco, R. , and Riosmena-Rodríguez, R. (2006). Rhodolith bed composition in the southwestern Gulf of California, Mexico. The Nagisa World Congress 1, 37–47.


Zaneveld, J. S. , and Sanford, R. B. (1980). Crustose corallinaceous algae (Rhodophyta) of the New Zealand and United States Scientific Expedition to the Ross Sea, Balleny Islands, and Macquarie Ridge, 1965. Blumea 26, 205–231.



Rent Article (via Deepdyve) Export Citation Cited By (126)