Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Optimising exclusion screens to control exotic carp in an Australian lowland river

Karl A. Hillyard A C , Benjamin B. Smith B , Anthony J. Conallin A B and Bronwyn M. Gillanders A
+ Author Affiliations
- Author Affiliations

A Southern Seas Ecology Laboratories, School of Earth and Environmental Sciences, Darling Building, DX 650 418, University of Adelaide, SA 5005, Australia.

B Inland Waters and Catchment Ecology Program, SARDI Aquatic Sciences, PO Box 120, Henley Beach, SA 5022, Australia.

C Corresponding author. Email: karl.hillyard@adelaide.edu.au

Marine and Freshwater Research 61(4) 418-429 https://doi.org/10.1071/MF09017
Submitted: 28 January 2009  Accepted: 6 September 2009   Published: 27 April 2010

Abstract

Carp exclusion screens (CES) are used to restrict adult common carp from entering wetlands, thereby minimising their ecological impacts and spawning and recruitment potential, but there is marked variation in current CES design and management. We quantified current CES designs, dimensions and locations within the Murray–Darling Basin, Australia. Directional fyke nets at inlets of six permanently inundated wetlands were used to identify fish using wetlands and therefore potentially vulnerable to CES. Morphometric data from captured fish were then used to design CES that excluded sexually mature carp. The ability of optimised and existing CES designs to exclude large-bodied fishes that used wetlands was then assessed. Fifty-four CES with eight mesh designs and varied dimensions were identified. We recorded 18 species comprising 212 927 fish in the wetland inlets. Two optimised meshes to exclude sexually mature carp were developed: a 44-mm square grid mesh and a ‘jail bar’ mesh with 31.4-mm gaps. Modelling revealed that up to 92% of carp could be excluded by either optimised mesh design, although few young-of-year carp were caught. Optimised and existing CES designs would also exclude 2–65% of large-bodied native fishes. Optimised CES may allow localised carp control without restricting passage of some key native fishes.

Additional keywords: control, Cyprinus carpio, introduced species, management, Murray–Darling Basin, physical barrier, rehabilitation.


Acknowledgements

We greatly appreciate the help of Bess Hillyard and David Wilson in the preparation of this manuscript, Michael Decelis and Leigh Thwaites for assistance in the field, Mike Copeland, Kathryn Stanislawski and Paul Stribley for help with accessing sites and many landholders who allowed access to the sites on their property. Adrienne Frears, Michael Harper, Anne Jensen, Deb Nias, Ken Smith and Tracey Steggles provided the location and details of many screens throughout the Basin. We also thank Andrew Boulton and three anonymous reviewers whose constructive comments significantly improved the manuscript. This research was funded by the Murray–Darling Basin Commission (MDBC Project MD746) and University of Adelaide Divisional Scholarships (to K.A.H. and A.J.C.) and was undertaken under the University of Adelaide Animal Ethics permit number S-063–2006.


References

Balcombe, S. R. , Arthington, A. H. , Foster, N. D. , Thoms, M. C. , and Wilson, G. G. , et al. (2006). Fish assemblages of an Australian dryland river: abundance, assemblage structure and recruitment patterns in the Warrego River, Murray–Darling Basin. Marine and Freshwater Research 57, 619–633.
CrossRef |

Baumgartner, L. J. , Stuart, I. G. , and Zampatti, B. P. (2008). Determining diel variation in fish assemblages downstream of three weirs in a regulated lowland river. Journal of Fish Biology 72, 218–232.
CrossRef |

Brown, P. , Sivakumaran, K. P. , Stoessel, D. , and Giles, A. (2005). Population biology of carp (Cyprinus carpio L.) in the mid-Murray River and Barmah Forest Wetlands, Australia. Marine and Freshwater Research 56, 1151–1164.
CrossRef |

Cadwallader, P. L. (1978). Some causes of the decline in range and abundance of native fish in the Murray–Darling River system. Proceedings of the Royal Society of Victoria 90, 211–224.


Cann J. (1998). ‘Australian Freshwater Turtles.’ (Beaumont Publishing Pty Ltd: Singapore.)

Clunie P., and Koehn J. (2001). Freshwater Catfish: a resource document. Freshwater ecology, Arthur Rylah Institute, Heidelberg. Final Report for Natural Resource Management Strategy Project R7002 to the Murray Darling Basin Commission, Canberra.

Crook, D. A. , and Gillanders, B. M. (2006). Use of otolith chemical signatures to estimate carp recruitment sources in the mid-Murray River, Australia. River Research and Applications 22, 871–879.
CrossRef |

Davies P. E., Harris J. H., Hillman T. J., and Walker K. F. (2008). SRA Report 1: A report on the ecological health of rivers in the Murray–Darling Basin, 2004–2007. Prepared by the Independent Sustainable Rivers Audit Group for the Murray–Darling Basin Ministerial Council, Canberra.

Diggle J., Day J., and Bax N. (2004). Eradicating European carp from Tasmania and implications for national European carp eradication. Inland Fisheries Service, Hobart.

Driver, P. D. , Closs, G. P. , and Koen, T. (2005). The effects of size and density of carp (Cyprinus carpio L.) on water quality in an experimental pond. Archiv für Hydrobiologie 163, 117–131.
CrossRef |

Fletcher, A. R. , Morison, A. K. , and Hume, D. J. (1985). Effects of carp, Cyprinus carpio L., on communities of aquatic vegetation and turbidity of waterbodies in the lower Goulburn River basin. Australian Journal of Marine and Freshwater Research 36, 311–327.
CrossRef |

French, J. R. P. , Wilcox, D. A. , and Nichols, S. J. (1999). Passing of northern pike and common carp through experimental barriers designed for use in wetland restoration. Wetlands 19, 883–888.
CrossRef |

Gehrke, P. C. , Brown, P. , Schiller, C. B. , Moffatt, D. B. , and Bruce, A. M. (1995). River regulation and fish communities in the Murray–Darling river system, Australia. Regulated Rivers: Research and Management 11, 363–375.
CrossRef |

Humphries P., and King A. J. (2004). Drifting fish larvae in Murray–Darling Basin rivers: composition, spatial and temporal patterns and distance drifted. In ‘Downstream Movement of Fish in the Murray–Darling Basin’. (Eds M. Lintermans and B. Phillips.) pp. 51–58. (Murray–Darling Basin Commission: Canberra.)

Humphries, P. , King, A. J. , and Koehn, J. D. (1999). Fish, flows and flood plains: links between freshwater fishes and their environment in the Murray–Darling River system, Australia. Environmental Biology of Fishes 56, 129–151.
CrossRef |

Jensen, A. (2002). Repairing wetlands of the Lower Murray: learning from restoration practice. Ecological Management & Restoration 3, 5–14.
CrossRef |

Jones, M. J. , and Stuart, I. G. (2007). Movements and habitat use of common carp (Cyprinus carpio) and Murray cod (Maccullochella peelii peelii) juveniles in a large lowland Australian river. Ecology of Freshwater Fish 16, 210–220.
CrossRef |

Jones, M. J. , and Stuart, I. G. (2008a). Lateral movement of common carp (Cyprinus carpio L.) in a large lowland river and floodplain. Ecology of Freshwater Fish 18, 72–82.
CrossRef |

Jones, M. J. , and Stuart, I. G. (2008b). Regulated floodplains – a trap for unwary fish. Fisheries Management and Ecology 15, 71–79.
CrossRef |

King, A. J. , Robertson, A. I. , and Healey, M. R. (1997). Experimental manipulations of the biomass of introduced carp (Cyprinus carpio) in billabongs. I. Impacts on water-column properties. Marine and Freshwater Research 48, 435–443.
CrossRef | CAS |

King, A. J. , Humphries, P. , and Lake, P. S. (2003). Fish recruitment on floodplains: the roles of patterns of flooding and life history characteristics. Canadian Journal of Fisheries and Aquatic Sciences 60, 773–786.
CrossRef |

King, A. J. , Tonkin, Z. , and Mahoney, J. (2008). Environmental flow enhances native fish spawning and recruitment in the Murray River, Australia. River Research and Applications 25, 1205–1218.
CrossRef |

Koehn J., Brumley A., and Gehrke P. (2000). ‘Managing the Impacts of Carp.’ (Bureau of Rural Sciences, Department of Agriculture, Fisheries and Forestry – Australia: Canberra.)

Lever C. (1994). ‘Naturalized Animals: The Ecology of Successfully Introduced Species.’ (T & A.D. Poyser Ltd: London.)

Lintermans M. (2007). ‘Fishes of the Murray–Darling Basin: An Introductory Guide.’ (Murray–Darling Basin Commission: Canberra.)

Lougheed, V. L. , and Chow–Fraser, P. (2001). Spatial variability in the response of lower trophic levels after carp exclusion from a freshwater marsh. Journal of Aquatic Ecosystem Stress and Recovery 9, 21–34.
CrossRef |

Lougheed, V. L. , Crosbie, B. , and Chow–Fraser, P. (1998). Predictions on the effect of common carp (Cyprinus carpio) exclusion on water quality, zooplankton, and submergent macrophytes in a Great Lakes wetland. Canadian Journal of Fisheries and Aquatic Sciences 55, 1189–1197.
CrossRef |

Lougheed, V. L. , Theysmeyer, T. S. , Smith, T. , and Chow–Fraser, P. (2004). Carp exclusion, food-web interactions, and the restoration of Cootes Paradise Marsh. Journal of Great Lakes Research 30, 44–57.
CrossRef |

Lucas M. C., and Baras E. (2001). ‘Migration of Freshwater Fishes.’ (Blackwell Science Ltd: Oxford.)

Maheshwari, B. L. , Walker, K. F. , and McMahon, T. A. (1995). Effects of regulation on the flow regime of the River Murray, Australia. Regulated Rivers: Research and Management 10, 15–38.
CrossRef |

Mallen–Cooper M. (2001). Fish passage in off-channel habitats of the Lower River Murray. Report to Wetland Care Australia. Fishway Consulting Services, St Ives Chase, NSW.

Mallen–Cooper, M. , and Stuart, I. G. (2003). Age, growth and non-flood recruitment of two potamodromous fishes in a large semi-arid/temperate river system. River Research and Applications 19, 697–719.
CrossRef |

Marking, L. L. (1992). Evaluation of toxicants for the control of carp and other nuisance fishes. Fisheries 17, 6–13.
CrossRef |

McColl, K. A. , Sunarto, A. , Williams, L. M. , and Crane, M. S. J. (2007). Koi herpes virus: dreaded pathogen or white knight? Aquaculture Health International 9, 4–6.


McDowall R. M. (1996). ‘Freshwater Fishes of South-Eastern Australia.’ 2nd edn. (Reed Books: Sydney.)

Meredith S. N., Zukowski S., and Conallin A. (2006). A case study approach to managing ephemeral wetlands for native fish: linking fish ecology to regulatory structure design and operation. In ‘Native Fish and Wetlands in the Murray–Darling Basin: Action Plan, Knowledge Gaps and Supporting Papers’. (Ed. B. Phillips.) pp. 29–44. (Murray–Darling Basin Commission: Canberra.)

Morgan, D. L. , Hambleton, S. J. , Gill, H. S. , and Beatty, S. J. (2002). Distribution, biology and likely impacts of the introduced redfin perch (Perca fluviatilis) (Percidae) in Western Australia. Marine and Freshwater Research 53, 1211–1221.
CrossRef |

Moyle, P. B. , and Light, T. (1996). Biological invasions of fresh water: Empirical rules and assembly theory. Biological Conservation 78, 149–161.
CrossRef |

Navarro, J. E. , and Johnson, D. L. (1992). Ecology of stocked northern pike in two Lake Erie controlled wetlands. Wetlands 12, 171–177.
CrossRef |

Nichols S., and Gilligan D. (2003). What about the fish? – Improving fish passage through wetland flow control structures in the lower River Murray. Australian Landscape Trust, Renmark.

Parkos, J. J. , Santucci, V. J. , and Wahl, D. H. (2006). Effectiveness of a plastic mesh substrate cover for reducing the effects of common carp on aquatic ecosystems. North American Journal of Fisheries Management 26, 861–866.
CrossRef |

Pressey B. (1990). Wetlands. In ‘The Murray’. (Eds N. Mackay and D. Eastburn.) pp. 167–181. (Murray–Darling Basin Commission: Canberra.)

Puckridge, J. T. , and Walker, K. F. (1990). Reproductive biology and larval development of a gizzard shad, Nematalosa erebi (Günther) (Dorosomatinae, Teleostei), in the River Murray, South Australia. Australian Journal of Marine and Freshwater Research 41, 695–712.
CrossRef |

Pusey B., Kennard M., and Arthington A. (2004). ‘Freshwater Fishes of North-Eastern Australia.’ (CSIRO Publishing: Melbourne.)

Reynolds, L. F. (1983). Migration patterns of five fish species in the Murray–Darling River system. Australian Journal of Marine and Freshwater Research 34, 857–871.
CrossRef |

Roberts, J. , Chick, A. , Oswald, L. , and Thompson, P. (1995). Effect of carp, Cyprinus carpio L., an exotic benthivorous fish, on aquatic plants and water quality in experimental ponds. Marine and Freshwater Research 46, 1171–1180.
CrossRef | CAS |

Robichaud, D. , Hunte, W. , and Oxenford, H. A. (1999). Effects of increased mesh size on catch and fishing power of coral reef fish traps. Fisheries Research 39, 275–294.
CrossRef |

Schultz, D. W. , Garvey, J. E. , and Brooks, R. C. (2007). Backwater immigration by fishes through a water control structure: Implications for connectivity and restoration. North American Journal of Fisheries Management 27, 172–180.
CrossRef |

Shields, J. T. (1958). Experimental control of carp reproduction through water drawdowns in Fort Randall Reservoir, South Dakota. Transactions of the American Fisheries Society 87, 23–33.
CrossRef |

Smith, B. B. , and Walker, K. F. (2004). Spawning dynamics of common carp in the River Murray, South Australia, shown by macroscopic and histological staging of gonads. Journal of Fish Biology 64, 336–354.
CrossRef |

Smith, B. B. , Conallin, A. , and Vilizzi, L. (2009). Regional patterns in the distribution, diversity and relative abundance of wetland fishes of the River Murray, South Australia. Transactions of the Royal Society of South Australia 133, 339–360.


Sorensen, P. W. , and Stacey, N. E. (2004). Brief review of fish pheromones and discussion of their possible uses in the control of non-indigenous teleost fishes. New Zealand Journal of Marine and Freshwater Research 38, 399–417.
CAS |

Sternberg, D. , Balcombe, S. , Marshall, J. , and Lobegeiger, J. (2008). Food resource variability in an Australian dryland river: evidence from the diet of two generalist native fish species. Marine and Freshwater Research 59, 137–144.
CrossRef |

Stuart, I. G. , and Jones, M. (2006). Large, regulated forest floodplain is an ideal recruitment zone for non-native common carp (Cyprinus carpio L.). Marine and Freshwater Research 57, 337–347.
CrossRef |

Stuart, I. G. , Williams, A. , McKenzie, J. , and Holt, T. (2006). Managing a migratory pest species: a selective trap for common carp. North American Journal of Fisheries Management 26, 888–893.
CrossRef |

Swanson, C. , Young, P. S. , and Cech, J. J. (2005). Close encounters with a fish screen: integrating physiological and behavioral results to protect endangered species in exploited ecosystems. Transactions of the American Fisheries Society 134, 1111–1123.
CrossRef |

Thresher, R. E. (2008). Autocidal technology for the control of invasive fish. Fisheries 33, 114–121.


Thwaites, L. A. , Smith, B. B. , Decelis, M. , Fleer, D. , and Conallin, A. (2010). A novel push trap element to manage carp (Cyprinus carpio L.): a laboratory trial. Marine and Freshwater Research 61, 42–48.
CrossRef |

Verrill, D. , and Berry, C. (1995). Effectiveness of an electrical barrier and lake drawdown for reducing common carp and bigmouth buffalo abundances. North American Journal of Fisheries Management 15, 137–141.
CrossRef |

Vilizzi, L. (1998). Age, growth and cohort composition of 0+ carp in the River Murray, Australia. Journal of Fish Biology 52, 997–1013.
CrossRef |

Walker K. F. (2006). Serial weirs, cumulative effects: the Lower River Murray, Australia. In ‘Ecology of Desert Rivers’. (Ed. R. T. Kingsford.) pp. 248–279. (Cambridge University Press: Cambridge.)

Walker, K. F. , and Thoms, M. C. (1993). Environmental effects of flow regulation on the Lower River Murray, Australia. Regulated Rivers: Research and Management 8, 103–119.
CrossRef |

Ward, J. V. (1989). The 4-dimensional nature of lotic ecosystems. Journal of the North American Benthological Society 8, 2–8.
CrossRef |

Webb, P. W. , LaLiberte, G. D. , and Schrank, A. J. (1996). Does body and fin form affect the manoeuvrability of fish traversing vertical and horizontal slits? Environmental Biology of Fishes 46, 7–14.
CrossRef |



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (20 KB) Export Citation Cited By (16)