Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Distribution and population genetics of the threatened freshwater crayfish genus Tenuibranchiurus (Decapoda : Parastacidae)

Kathryn L. Dawkins A D , James M. Furse B , Clyde H. Wild B and Jane M. Hughes C
+ Author Affiliations
- Author Affiliations

A Australian Rivers Institute, Griffith University, Gold Coast, Qld 4222, Australia.

B Environmental Futures Centre, Griffith University, Gold Coast, Qld 4222, Australia.

C Australian Rivers Institute, Griffith University, Nathan, Qld 4111, Australia.

D Corresponding author. Email: k.dawkins@griffith.edu.au

Marine and Freshwater Research 61(9) 1048-1055 https://doi.org/10.1071/MF09294
Submitted: 19 November 2009  Accepted: 30 March 2010   Published: 23 September 2010

Abstract

Very high rates of extinction are recorded in freshwater ecosystems, with coastally distributed species threatened by urban development, pollution and climate change. One example, the world’s second smallest freshwater crayfish (genus Tenuibranchiurus), inhabits coastal swamps in central-eastern Australia. Although only one species is described (Tenuibranchiurus glypticus), it was expected that populations isolated through habitat fragmentation would be highly divergent. The aims of this study were to determine if populations of Tenuibranchiurus are genetically distinct, and if ancient divergence, as indicated in other species in the region, was evident. Tenuibranchiurus were collected at seven sites, extending the known geographical distribution ~260 km south to Wooli, New South Wales. Analysis of two mitochondrial DNA gene regions indicated two highly divergent clades, with numerous additional subclades. Both clades and subclades were strongly congruent with geographical location, and were estimated to have diverged from each other during the Miocene or Pliocene era. Little sharing of haplotypes between subpopulations was evident, indicating negligible gene flow, and genetic differentiation between subclades possibly indicates distinct species. The coastal distribution of Tenuibranchiurus, severe habitat fragmentation and clear differences between subclades suggest that they should be recognised as evolutionarily significant units, and be treated as such if conservation and management initiatives are warranted.


Acknowledgements

This study was conducted as a major part of a B.Sc. (Hons) by Kathryn Dawkins under the supervision of James Furse, Professor Jane Hughes and Professor Clyde Wild. Funding for this study was provided by both the Australian Rivers Institute and the Griffith School of Environment, Griffith University. Additional funding for genetic analysis was also provided by Rob McCormack and his company ‘AABio’ and was greatly appreciated. The authors would like to thank the two anonymous reviewers and the associate editor for their helpful comments, Michael Arthur for statistical guidance and Rob McCormack, Jason Coughran and many other volunteers for field assistance. Crayfish were collected under NSW Scientific Collection Permit P05/0077-3.1 and Qld General Fisheries Permit #91210.


References

Austin, C. M. , and Ryan, S. G. (2002). Allozyme evidence for a new species of freshwater crayfish of the genus Cherax Erichson (Decapoda :Parastacidae) from the south-west of Western Australia. Invertebrate Systematics 16, 357–367.
CrossRef |

Baker, A. M. , Williams, S. A. , and Hughes, J. M. (2003). Patterns of spatial genetic structuring in a hydropsychid caddisfly (Cheumatopsyche sp. AV1) from southeastern Australia. Molecular Ecology 12, 3313–3324.
CrossRef | PubMed |

Baker, A. M. , Hughes, J. M. , Dean, J. C. , and Bunn, S. E. (2004). Mitochondrial DNA reveals phylogenetic structuring and cryptic diversity in Australian freshwater macroinvertebrate assemblages. Marine and Freshwater Research 55, 629–640.
CrossRef |

Bentley A. (2007). Phylogeographic structure of freshwater crayfish of the genus Cherax (Decapoda: Parastacidae) on the mainland and islands of southeast Queensland. BSc (Hons) Thesis, Griffith University, Nathan.

Bentley, A. I. , Schmidt, D. J. , and Hughes, J. M. (2010). Extensive intraspecific genetic diversity of a freshwater crayfish in a biodiversity hotspot. Freshwater Biology 55, 1861–1873.
CrossRef |

Carini, G. , and Hughes, J. M. (2004). Population structure of Macrobrachium australiense (Decapoda: Palaemonidae) in Western Queensland, Australia: the role of contemporary and historical processes. Heredity 93, 350–363.
CrossRef | PubMed |

Chenoweth, S. F. , and Hughes, J. M. (2003). Speciation and phylogeography in Caridina indistincta, a complex of freshwater shrimps from Australian heathland streams. Marine and Freshwater Research 54, 807–812.
CrossRef |

Clement, M. , Posada, D. , and Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology 9, 1657–1659.
CrossRef | PubMed |

Cook, B. D. , Baker, A. M. , Page, T. J. , Grant, C. , and Fawcett, J. H. , et al. (2006). Biogeographic history of an Australian freshwater shrimp, Paratya australiensis (Atyidae): the role of life history transition in phylogeographic diversification. Molecular Ecology 15, 1083–1093.
CrossRef | PubMed |

Cook, B. D. , Page, T. J. , and Hughes, J. M. (2008a). Importance of cryptic species for identifying ‘representative’ units of biodiversity for freshwater conservation. Biological Conservation 141, 2821–2831.
CrossRef |

Cook, B. D. , Pringle, C. M. , and Hughes, J. M. (2008b). Molecular evidence for sequential colonization and taxon cycling in freshwater decapod shrimps on a Caribbean island. Molecular Ecology 17, 1066–1075.
CrossRef | PubMed |

Crandall, K. A. (2002). Crayfish as model organisms. Freshwater Crayfish 13, 3–10.


Crandall, K. A. , Fetzner, J. W. , Lawler, S. H. , Kinnersley, M. , and Austin, C. M. (1999). Phylogenetic relationships among the Australian and New Zealand genera of freshwater crayfishes (Decapoda : Parastacidae). Australian Journal of Zoology 47, 199–214.
CrossRef |

de Bruyn, M. , Wilson, J. A. , and Mather, P. B. (2004). Huxley’s line demarcates extensive genetic divergence between eastern and western forms of the giant freshwater prawn, Macrobrachium rosenbergii. Molecular Phylogenetics and Evolution 30, 251–257.
CrossRef | PubMed |

Dieguez-Uribeondo, J. , Royo, F. , Souty-Grosset, C. , Ropiquet, A. , and Grandjean, F. (2008). Low genetic variability of the white-clawed crayfish in the Iberian Peninsula: its origin and management implications. Aquatic Conservation: Marine & Freshwater Ecosystems 18, 19–31.
CrossRef |

Doyle, J. J. , and Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of leaf tissue. Phytochemical Bulletin 19, 11–15.


Excoffier, L. , Laval, G. , and Schneider, S. (2005). Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1, 47–50.
PubMed |

Fratini, S. , Zaccara, S. , Barbaresi, S. , Grandjean, F. , and Souty-Grosset, C. , et al. (2005). Phylogeography of the threatened crayfish (genus Austropotamobius) in Italy: implications for its taxonomy and conservation. Heredity 94, 108–118.
CrossRef | PubMed |

Fu, Y.-X. , and Li, W.-L. (1993). Statistical tests of neutrality of mutations. Genetics 133, 693–709.
PubMed |

GeneCodes (2000). ‘Sequencher (Version 4.1.2).’ (Gene Codes Corporation: Ann Arbor, MI.)

Gouin, N. , Grandjean, F. , and Souty-Grosset, C. (2006). Population genetic structure of the endangered crayfish Austropotamobius pallipes in France based on microsatellite variation: biogeographical inferences and conservation implications. Freshwater Biology 51, 1369–1387.
CrossRef |

Harding, D. , and Williamson, I. (2003). A note on the habitat requirements of the swamp crayfish on Bribie Island, southeastern Queensland. Memoirs of the Queensland Museum 49, 452.


Harding, D. , and Williamson, I. (2004). The influence of light phase and predators on the behaviour of swamp crayfish. Memoirs of the Queensland Museum 49, 704.


Hartl D. L., and Clark A. G. (2007). ‘Principles of Population Genetics.’ 4th edn. (Sinauer Associates Inc. Publishers: Sunderland, MA.)

Horwitz P. (1995). A preliminary key to the species of Decapoda (Crustacea: Malacostraca) found in Australian inland waters. Co-operative Research Centre for Freshwater Ecology, Albury, Australia.

Hughes, J. M. , and Hillyer, M. J. (2003). Patterns of connectivity among populations of Cherax destructor (Decapoda : Parastacidae) in western Queensland, Australia. Marine and Freshwater Research 54, 587–596.
CrossRef |

Hughes, J. M. , Ponniah, M. , Hurwood, D. A. , Chenoweth, S. F. , and Arthington, A. (1999). Strong genetic structuring in a habitat specialist, the Oxleyan Pygmy Perch Nannoperca oxleyana. Heredity 83, 5–14.
CrossRef | PubMed |

Jenkins, M. (2003). Prospects for biodiversity. Science 302, 1175–1177.
CrossRef | PubMed |

Joyce K. (2006). ‘Wetland Management Profile: Coastal Melaleuca Swamp Wetlands.’ (Ecosystem Conservation Branch, EPA: Brisbane, Queensland.)

Katoh, K. , Kuma, K.-I. , Toh, H. , and Miyata, T. (2005). MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Research 33, 511–518.
CrossRef | PubMed |

Knight, J. T. , Nock, C. J. , Elphinstone, M. S. , and Baverstock, P. R. (2009). Conservation implications of distinct genetic structuring in the endangered freshwater fish Nannoperca oxleyana (Percichthyidae). Marine and Freshwater Research 60, 34–44.
CrossRef |

Lindqvist O. V., and Huner J. V. (1999). Life history characteristics of crayfish: What makes some of them good colonizers? In ‘Biotic Interactions and Global Change’. (Eds P. Kareiva, J. Kingsolver and R. Huey.) pp. 23–30. (Sinauer Associates Inc.: Sunderland, MA.)

Loh J. (2002). ‘Living. The Planetary Report, 2002.’ (World Wide Fund for Nature International: Gland, Switzerland.)

Margules, C. R. , and Pressey, R. L. (2000). Systematic conservation planning. Nature 405, 243–253.
CrossRef | PubMed |

Mills, C. E. , Hadwen, W. L. , and Hughes, J. M. (2008). Looking through glassfish: marine genetic structure in an estuarine species. Marine and Freshwater Research 59, 627–637.
CrossRef |

Moritz, C. (1994). Defining ‘evolutionarily significant units’ for conservation. Trends in Ecology & Evolution 9, 373–375.
CrossRef |

Morrison, C. L. , Rios, R. , and Duffy, J. E. (2004). Phylogenetic evidence for an ancient rapid radiation of Caribbean sponge-dwelling snapping shrimps (Synalpheus). Molecular Phylogenetics and Evolution 30, 563–581.
CrossRef | PubMed |

Nguyen, T. T. T. , Meewan, M. , Ryan, S. , and Austin, C. M. (2002). Genetic diversity and translocation in the marron, Cherax tenuimanus (Smith): implications for management and conservation. Fisheries Management and Ecology 9, 163–173.
CrossRef |

Page, T. J. , and Hughes, J. M. (2007). Phylogeographic structure in an Australian freshwater shrimp largely pre-dates the geological origins of its landscape. Heredity 98, 222–231.
CrossRef | PubMed |

Page, T. J. , Sharma, S. , and Hughes, J. M. (2004). Deep phylogenetic structure has conservation implications for ornate rainbow fish (Melanotaeniidae: Rhadinocentrus ornatus) in Queensland, eastern Australia. Marine and Freshwater Research 55, 165–172.
CrossRef |

Palumbi S. R., Martin A., Romano S., McMillan W. O., Stice L., et al. (1991). ‘The Simple Fool’s Guide to PCR.’ (University of Hawaii Press: Honolulu.)

Ponniah, M. , and Hughes, J. M. (2004). The evolution of Queensland spiny mountain crayfish of the genus Euastacus. I. Testing vicariance and dispersal with interspecific mitochondrial DNA. Evolution 58, 1073–1085.
PubMed |

Posada, D. (2008). jModelTest: Phylogenetic Model Averaging. Molecular Biology and Evolution 25, 1253–1256.
CrossRef | PubMed |

Ricciardi, A. , and Rasmussen, J. B. (1999). Extinction rates of North American freshwater fauna. Conservation Biology 13, 1220–1222.
CrossRef |

Riek, E. F. (1951). The freshwater crayfish (family Parastacidae) of Queensland, with an appendix describing other Australian species. Records of the Australian Museum 22, 368–388.


Riek, E. F. (1969). The Australian freshwater crayfish (Crustacea : Decapoda : Parastacidae), with descriptions of new species. Australian Journal of Zoology 17, 855–918.
CrossRef |

Rode, A. L. , and Babcock, L. E. (2003). Phylogeny of fossil and extant freshwater crayfish and some closely related nephropid lobsters. Journal of Crustacean Biology 23, 418–435.
CrossRef |

Santos, S. R. (2006). Patterns of genetic connectivity among anchialine habitats: a case study of the endemic Hawaiian shrimp Halocaridina rubra on the island of Hawaii. Molecular Ecology 15, 2699–2718.
CrossRef | PubMed |

Schubart, C. D. , Diesel, R. , and Hedges, S. B. (1998). Rapid evolution to terrestrial life in Jamaican crabs. Nature 393, 363–365.
CrossRef |

Schultz, M. B. , Smith, S. A. , Richardson, A. M. M. , Horwitz, P. , and Crandall, K. A. , et al. (2007). Cryptic diversity in Engaeus Erichson, Geocharax Clark and Gramastacus Riek (Decapoda : Parastacidae) revealed by mitochondrial 16S rDNA sequences. Invertebrate Systematics 21, 569–587.
CrossRef |

Schultz, M. B. , Smith, S. A. , Horwitz, P. , Richardson, A. M. M. , and Crandall, K. A. , et al. (2009). Evolution underground: A molecular phylogenetic investigation of Australian burrowing freshwater crayfish (Decapoda: Parastacidae) with particular focus on Engaeus Erichson. Molecular Phylogenetics and Evolution 50, 580–598.
CrossRef | PubMed |

Sharma, S. , and Hughes, J. M. (2009). Genetic structure and phylogeography of freshwater shrimps (Macrobrachium australiense and Macrobrachium tolmerum): the role of contemporary and historical events. Marine and Freshwater Research 60, 541–553.
CrossRef |

Slatkin, M. (1993). Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47, 264–279.
CrossRef |

Stamatakis, A. (2006). RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.
CrossRef | PubMed |

Stillman, J. H. , and Reeb, C. A. (2001). Molecular phylogeny of eastern Pacific porcelain crabs, genera Petrolisthes and Pachycheles, based on the mtDNA 16S rDNA sequence: phylogeographic and systematic implications. Molecular Phylogenetics and Evolution 19, 236–245.
CrossRef | PubMed |

Sturmbauer, C. , Leninton, J. S. , and Christy, J. (1996). Molecular phylogeny analysis of fiddler crabs: Test of the hypothesis of increasing behavioral complexity in evolution. Proceedings of the National Academy of Sciences of the United States of America 93, 10 855–10 857.
CrossRef | PubMed |

Swofford D. L. (2003). ‘PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods) (Version 4).’ (Sinauer Associates: Sunderland, MA.)

Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595.
PubMed |

Tamura, K. , Dudley, J. , Nei, M. , and Kumar, S. (2007). MEGA 4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 1596–1599.
CrossRef | PubMed |

Taylor, C. A. , Schuster, G. A. , Cooper, J. E. , DiStefano, R. J. , and Eversole, A. G. , et al. (2007). A reassessment of the conservation status of crayfishes of the United States and Canada after 10+ years of increased awareness. Fisheries 32, 372–389.
CrossRef |

Wares, J. P. , and Cunningham, C. W. (2001). Phylogeography and historical ecology of the North Atlantic intertidal. Evolution 55, 2455–2469.
PubMed |



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (10 KB) Export Citation Cited By (10)