Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Changes in organic-matter dynamics and physicochemistry, associated with riparian vegetation loss and river regulation in floodplain wetlands of the Murray River, Australia

Susanne C. Watkins A B D , G. P. Quinn C and Ben Gawne B

A School of Biological Sciences, Monash University, Clayton, Vic. 3800, Australia.

B Present address: The Murray–Darling Freshwater Research Centre, La Trobe University, PO Box 991, Wodonga, Vic. 3689, Australia.

C School of Life and Environmental Sciences, Deakin University, Warrnambool, Vic. 3280, Australia.

D Corresponding author. Email: s.watkins@latrobe.edu.au

Marine and Freshwater Research 61(10) 1207-1217 https://doi.org/10.1071/MF09312
Submitted: 18 December 2009  Accepted: 22 May 2010   Published: 14 October 2010

Abstract

Extensive clearing of floodplain forests potentially reduces organic matter available to floodplain wetlands. Furthermore, on rivers regulated to provide irrigation water in summer, floodplain wetlands that were previously inundated in spring, now flood in summer/autumn. In the Murray–Darling Basin, Australia, this has changed the timing of organic matter entering the aquatic phase, since leaf fall peaks in summer. Field surveys and mesocosm experiments on floodplain wetlands on the River Murray revealed faster processing rates of leaves in summer/autumn than spring, and no difference between cleared and forested wetlands. Temperature and leaf carbon : nitrogen ratio could not explain these differences, and instead, changes to leaf chemistry associated with ‘terrestrial ageing’ between peak leaf fall in summer and inundation in spring is more likely. The results indicated that the reduction of input of organic matter through riparian tree clearing and changing the timing of inundation interact to alter organic-matter standing stocks and rates of decomposition in floodplain wetlands. Restoring both natural timing of high flows and riparian vegetation might be required for recovery of these wetlands.

Additional keywords: decomposition, dissolved oxygen, Eucalyptus camaldulensis, mesocosm, restoration.


Acknowledgements

This work was funded by an Australian Postgraduate Award scholarship and CRC for Freshwater Ecology top-up scholarship. The manuscript was improved by comments from Gavin Rees, Daryl Nielsen, Darren Baldwin, three anonymous referees and statistical advice from Rick Stoffels. The Albury City Council and Wonga Wetlands are thanked for allowing us to use their facilities to conduct the mesocosm experiments.


References

Arthington, A. H. , and Pusey, B. J. (2003). Flow restoration and protection in Australian rivers. River Research and Applications 19, 377–395.
CrossRef |

Baldwin, D. S. (1999). Dissolved organic matter and phosphorus leached from fresh and ‘terrestrially’ aged river red gum leaves: implications for assessing river-floodplain interactions. Freshwater Biology 41, 675–685.
CrossRef | CAS |

Ballantine, K. , and Schneider, R. (2009). Fifty-five years of soil development in restored freshwater depressional wetlands. Ecological Applications 19, 1467–1480.
CrossRef | PubMed |

Bayley, P. B. (1995). Understanding large river-floodplain ecosystems. BioScience 45, 153–159.
CrossRef |

Boon, P. I. , and Sorrell, B. K. (1991). Biogeochemistry of billabong sediments I. The effect of macrophytes. Freshwater Biology 26, 209–226.
CrossRef | CAS |

Boon P. I., Frankenberg J., Hillman T. J., Oliver R. L., and Shiel R. J. (1990). Billabongs. In ‘The Murray’. (Eds N. Mackay and D. Eastburn.) pp. 183–198. (Murray Darling Basin Commission: Canberra.)

Borneman, J. , and Triplett, E. W. (1997). Molecular microbial diversity in soils from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation. Applied and Environmental Microbiology 63, 2647–2653.
CAS | PubMed |

Boulton, A. J. , and Boon, P. I. (1991). A review of methodology used to measure leaf litter decomposition in lotic environments: time to turn over an old leaf? Australian Journal of Marine and Freshwater Research 42, 1–43.
CrossRef | CAS |

Briggs, S. V. , and Maher, M. T. (1983). Litter fall and leaf decomposition in a river red gum (Eucalyptus camaldulensis) swamp. Australian Journal of Botany 31, 307–316.
CrossRef | CAS |

Bunn S. E. (1986). Origin and fate of organic matter in Australian upland streams. In ‘Limnology in Australia’. (Eds P. De Deckker and W. D. Williams.) pp. 277–291. (CSIRO Australia/Dr W. Junk Publishers: Melbourne.)

Campbell, I. C. , and Fuchshuber, L. (1994). Amount, composition and seasonality of terrestrial litter accession to an Australian cool temperate rainforest stream. Archiv fuer Hydrobiologie 130, 499–512.


Campbell, I. C. , and Fuchshuber, L. (1995). Polyphenols, condensed tannins, and processing rates of tropical and temperate leaves in an Australian stream. Journal of the North American Benthological Society 14, 174–182.
CrossRef |

Campbell, I. C. , James, K. R. , Hart, B. T. , and Devereaux, A. (1992). Allochthonous coarse particulate organic material in forest and pasture reaches of two south-eastern Australian streams. I. Litter accession. Freshwater Biology 27, 341–352.
CrossRef |

Chergui, H. , and Pattee, E. (1990). The influence of season on the breakdown of submerged leaves. Archiv fuer Hydrobiologie 120, 1–12.


Cummins, K. W. (1973). Trophic relations of aquatic insects. Annual Review of Entomology 18, 183–206.
CrossRef |

Eaton A. D., and Franson M. A. H. (2005). ‘Standard Methods for the Examination of Water and Wastewater.’ 21st centennial edn. (American Public Health Association, American Water Works Association, Water Environment Federation: Washington, DC.)

Fisher, S. G. , and Likens, G. E. (1973). Energy flow in Bear Brook, New Hampshire: an integrative approach to stream ecosystem metabolism. Ecological Monographs 43, 421–439.
CrossRef |

Francis, C. , and Sheldon, F. (2002). River red gum (Eucalyptus camaldulensis Dehnh.) organic matter as a carbon source in the lower Darling River, Australia. Hydrobiologia 481, 113–124.
CrossRef | CAS |

Gehrke, P. C. , Revell, M. B. , and Philbey, A. W. (1993). Effects of river red gum, Eucalyptus camaldulensis, litter on golden perch, Macquaria ambigua. Journal of Fish Biology 43, 265–279.
CrossRef |

Glazebrook, H. S. , and Robertson, A. I. (1999). The effect of flooding and flood timing on leaf litter breakdown rates and nutrient dynamics in a river red gum (Eucalyptus camaldulensis) forest. Australian Journal of Ecology 24, 625–635.
CrossRef |

Golladay, S. W. , Webster, J. R. , Benfield, E. F. , and Swank, W. T. (1992). Changes in stream stability following forest clearing as indicated by storm nutrient budgets. Archiv fuer Hydrobiologie 90(Suppl.), 1–33.


Growns, J. E. , Davis, J. A. , Cheal, F. , Schmidt, L. G. , and Rosich, R. S. , et al. (1992). Multivariate pattern analysis of wetland invertebrate communities and environmental variables in Western Australia. Australian Journal of Ecology 17, 275–288.
CrossRef |

Herbst, G. , and Reice, S. R. (1982). Comparative leaf litter decomposition in temporary and permanent streams in semi-arid regions of Israel. Journal of Arid Environments 5, 305–318.


Hillman T. J. (1986). Billabongs. In ‘Limnology in Australia’. (Eds P. De Deckker and W. D. Williams.) pp. 457–470. (CSIRO Australia/Dr W. Junk Publishers: Melbourne.)

Hosomi, M. , and Sudo, R. (1986). Simultaneous determination of total nitrogen and total phosphorus in freshwater samples using persulfate digestion. International Journal of Environmental Studies 27, 267–275.
CrossRef | CAS |

Howitt, J. A. , Baldwin, D. S. , Rees, G. N. , and Williams, J. L. (2007). Modelling blackwater: predicting water quality during flooding of lowland river forests. Ecological Modelling 203, 229–242.
CrossRef |

Janssen, M. A. , and Walker, K. F. (1999). Processing of riparian and wetland plant litter in the River Murray, South Australia. Hydrobiologia 411, 53–64.
CrossRef |

Kiffney, P. M. , Richardson, J. S. , and Bull, J. P. (2003). Responses of periphyton and insects to experimental manipulation of riparian buffer width along forest streams. Journal of Applied Ecology 40, 1060–1076.
CrossRef |

Lake, P. S. (1982). The 1981 Jolly Award Address. Ecology of the macroinvertebrates of Australian upland streams: a review of current knowledge. Bulletin of the Australian Society for Limnology 8, 1–15.


Lake P. S. (1995). Of floods and droughts: river and stream ecosystems of Australia. In ‘River and Stream Ecosystems of the World’. (Eds C. E. Cushing, K. W. Cummins and G. W. Minshall.) pp. 659–694. (Elsevier Science: Amsterdam.)

Leff, L. G. , and McArthur, J. V. (1990). Effect of nutrient content on leaf decomposition in a coastal-plain stream: a comparison of green and senescent leaves. Journal of Freshwater Ecology 5, 269–277.
CAS |

Lowe, R. L. , Golladay, S. W. , and Webster, J. R. (1986). Periphyton response to nutrient manipulation in streams draining clearcut and forested watersheds. Journal of the North American Benthological Society 5, 221–229.
CrossRef |

Maheshwari, B. L. , Walker, K. F. , and McMahon, T. A. (1995). Effects of regulation on the flow regime of the River Murray, Australia. Regulated Rivers: Research and Management 10, 15–38.
CrossRef |

McCarthy, B. , Conallin, A. , D’Santos, P. , and Baldwin, D. S. (2006). Acidification, salinization and fish kills at an inland wetland in south-eastern Australia following partial drying. Ecological Management & Restoration 7, 218–223.
CrossRef |

Meyer, J. L. (1990). A blackwater perspective on riverine ecosystems. BioScience 40, 643–651.
CrossRef |

Mitsch W. J., and Gosselink J. G. (2000). ‘Wetlands.’ (John Wiley & Sons, Inc.: New York.)

O’Connell, M. , Baldwin, D. S. , Robertson, A. I. , and Rees, G. (2000). Release and bioavailability of dissolved organic matter from floodplain litter: influence of origin and oxygen levels. Freshwater Biology 45, 333–342.
CrossRef | CAS |

Patrick, R. , Binetti, V. P. , and Halterman, S. G. (1981). Acid lakes from natural and anthropogenic causes. Science 211, 446–448.
CrossRef | CAS | PubMed |

Petersen, R. C. , and Cummins, K. W. (1974). Leaf processing in a woodland stream. Freshwater Biology 4, 343–368.
CrossRef |

Poff, N. L. , Allan, J. D. , Bain, M. B. , Karr, J. R. , and Prestegaard, K. L. , et al. (1997). The natural flow regime. BioScience 47, 769–784.
CrossRef |

Pressland, A. J. (1982). Litter production and decomposition from an overstorey of Eucalyptus spp. on two catchments in the New England region of New South Wales. Australian Journal of Ecology 7, 171–180.
CrossRef |

Quinn G. P., and Keough M. J. (2002). ‘Experimental Design and Data Analysis for Biologists.’ (Cambridge University Press: Cambridge.)

Reid, D. J. , Lake, P. S. , Quinn, G. P. , and Reich, P. (2008). Association of reduced riparian vegetation cover in agricultural landscapes with coarse detritus dynamics in lowland streams. Marine and Freshwater Research 59, 998–1014.
CrossRef |

Robertson, A. I. , Bunn, S. E. , Boon, P. I. , and Walker, K. F. (1999). Sources, sinks and transformations of organic carbon in Australian floodplain rivers. Marine and Freshwater Research 50, 813–829.
CrossRef | CAS |

Specht, R. L. , and Brouwer, Y. M. (1975). Seasonal shoot growth of Eucalyptus spp. in the Brisbane area of Queensland (with notes on shoot growth and litter fall in other areas of Australia). Australian Journal of Botany 23, 459–474.
CrossRef |

Sweeney, B. W. (1993). Effects of streamside vegetation on macroinvertebrate communities of White Clay Creek in eastern North-America. Proceedings. Academy of Natural Sciences of Philadelphia 144, 291–340.


Sweeney, B. W. , Bott, T. L. , Jackson, J. K. , Kaplan, L. A. , and Newbold, J. D. , et al. (2004). Riparian deforestation, stream narrowing, and loss of stream ecosystem services. Proceedings of the National Academy of Sciences, USA 101, 14 132–14 137.
CrossRef | CAS |

Tockner, K. , and Stanford, J. A. (2002). Riverine flood plains: present state and future trends. Environmental Conservation 29, 308–330.
CrossRef |

Townsend, S. A. , Boland, K. T. , and Wrigley, T. J. (1992). Factors contributing to a fish kill in the Australian wet/dry tropics. Water Research 26, 1039–1044.
CrossRef | CAS |

Upchurch, R. , Chi, C. Y. , Everett, K. , Dyszynski, G. , and Coleman, D. C. , et al. (2008). Differences in the composition and diversity of bacterial communities from agricultural and forest soils. Soil Biology & Biochemistry 40, 1294–1305.
CrossRef | CAS |

Walker, J. , Bullen, F. , and Williams, B. G. (1993). Ecohydrological changes in the Murray–Darling Basin. 1. The number of trees cleared over 2 centuries. Journal of Applied Ecology 30, 265–273.
CrossRef |

Wallace, J. B. , Eggert, S. L. , Meyer, J. L. , and Webster, J. R. (1999). Effects of resource limitation on a detrital-based ecosystem. Ecological Monographs 69, 409–442.
CrossRef |

Wallace, T. A. , Ganf, G. G. , and Brookes, J. D. (2008). A comparison of phosphorus and DOC leachates from different types of leaf litter in an urban environment. Freshwater Biology 53, 1902–1913.
CrossRef | CAS |

Webster, J. R. , and Benfield, E. F. (1986). Vascular plant breakdown in freshwater ecosystems. Annual Review of Ecology and Systematics 17, 567–594.
CrossRef |

Wieder, R. K. , and Lang, G. E. (1982). A critique of the analytical methods used in examining decomposition data obtained from litter bags. Ecology 63, 1636–1642.
CrossRef |

Wood, P. J. , and Armitage, P. D. (1997). Biological effects of fine sediment in the lotic environment. Environmental Management 21, 203–217.
CrossRef | PubMed |



Rent Article (via Deepdyve) Export Citation Cited By (10)