Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Lack of genetic differentiation observed in Pacific bluefin tuna (Thunnus orientalis) from Taiwanese and New Zealand waters using mitochondrial and nuclear DNA markers

Mei-Chen Tseng A C and Peter J. Smith B
+ Author Affiliations
- Author Affiliations

A Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912, Taiwan, ROC.

B Museum Victoria, GPO Box 666, Melbourne, Vic. 3001, Australia.

C Corresponding author. Email: mctseng@mail.npust.edu.tw

Marine and Freshwater Research 63(3) 198-209 https://doi.org/10.1071/MF11126
Submitted: 7 June 2011  Accepted: 1 November 2011   Published: 13 December 2011

Abstract

The Pacific bluefin tuna, Thunnus orientalis, is distributed mainly in the north Pacific Ocean, but a few individuals are also found in the south Pacific Ocean. We tested the ‘one-stock’ hypothesis that genetic differentiation is absent between populations from the north and south Pacific Oceans. Three molecular markers, cytochrome (Cyt) b, control region (CR) and microsatellites, were applied to identify species, investigate the population genetic structure and infer the population demographics of T. orientalis in Taiwanese and New Zealand waters. Tissue samples of T. orientalis were collected from Taiwanese (n = 53) and New Zealand (n = 70) waters. A neighbour-joining (NJ) tree of the Cyt b gene revealed a monophyletic topology. An NJ tree of the CR showed insignificant geographical grouping. Nei’s genetic identity (0.971), FST (0.003, P = 0.243) and RST (0.019, P = 0.099) between the two sets of samples were estimated from seven microsatellite loci. A factorial correspondence analysis and assignment test showed that these two sample sets lacked genetic differentiation. All these results support the one-stock hypothesis in these two samples from Taiwanese and New Zealand waters implying that they should compose the single management unit.

Additional keywords: control region, cytochrome b, microsatellite, one-stock hypothesis.


References

Alvarado-Bremer, J. R., Naseri, I., and Ely, B. (1997). Orthodox and unorthodox phylogenetic relationships among tunas revealed by the nucleotide sequence analysis of the mitochondrial control region. Journal of Fish Biology 50, 540–554.

Alvarado Bremer, J. R., Stequert, B., Robertson, N. W., and Ely, B. (1998). Genetic evidence for inter-oceanic subdivision of bigeye tuna (Thunnus obesus) populations. Marine Biology 132, 547–557.
Genetic evidence for inter-oceanic subdivision of bigeye tuna (Thunnus obesus) populations.Crossref | GoogleScholarGoogle Scholar |

Bayliff, W. H. (1991). Status of northern bluefin tuna in the Pacific Ocean. Inter-American Tropical Tuna Commission Special Report 7, 29–88.

Bayliff, W. H. (1994). A review of the biology and fisheries for northern bluefin tuna, Thunnus thynnus, in the Pacific Ocean. In ‘Interactions of Pacific Tuna Fisheries’. (Eds R. S. Shomura, J. Majkowski, and S. Langi.) pp. 244–295. (FAO: Rome.)

Bayliff, W. H. (2001). Status of bluefin tuna in the Pacific Ocean. Inter-American Tropical Tuna Commission Stock Assessment Report 1, 211–254.

Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N., and Bonhomme, F. (2004). GENETIX 4.05: logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier, France.

Block, B. A., Finnerty, J. R., Stewart, A. F., and Kidd, J. (1993). Evolution of endothermy in fish: mapping physiological traits on a molecular phylogeny. Science 260, 210–214.
Evolution of endothermy in fish: mapping physiological traits on a molecular phylogeny.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXktVahsb4%3D&md5=2af54bbab69623aca4534d743277e395CAS |

Carlsson, J., McDowell, J. R., Carlsson, J. E. L., and Graves, J. E. (2007). Genetic identity of YOY bluefin tuna from the eastern and western Atlantic spawning areas. The Journal of Heredity 98, 23–28.
Genetic identity of YOY bluefin tuna from the eastern and western Atlantic spawning areas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1Wnt7s%3D&md5=68e4edf2d29413859f6a3893eb88ca3cCAS |

CCSBT (2011). Report of the Sixteenth Meeting of the Scientific Committee. Available at http://www.ccsbt.org/userfiles/file/docs_english/meetings/meeting_reports/ccsbt_18/report_of_SC16.pdf [Accessed July 2011].

Chen, K. S., Crone, P., and Hsu, C. C. (2006). Reproductive biology of female Pacific bluefin tuna Thunnus orientalis from south-western North Pacific Ocean. Fisheries Science 72, 985–994.
Reproductive biology of female Pacific bluefin tuna Thunnus orientalis from south-western North Pacific Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFGhs7bN&md5=f8dbf4e168f53b28dacadc0bdcadfaf2CAS |

Chiang, H. C., Hsu, C. C., Lin, H. D., Ma, G. C., Chiang, T. Y., and Yang, H. Y. (2006). Population structure of bigeye tuna (Thunnus obesus) in the South China Sea, Philippine Sea and western Pacific Ocean inferred from mitochondrial DNA. Fisheries Research 79, 219–225.
Population structure of bigeye tuna (Thunnus obesus) in the South China Sea, Philippine Sea and western Pacific Ocean inferred from mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar |

Chiang, H. C., Hsu, C. C., Wu, G. C. C., Chank, S. K., and Yang, H. Y. (2008). Population structure of bigeye tuna (Thunnus obesus) in the Indian Ocean inferred from mitochondrial DNA. Fisheries Research 90, 305–312.
Population structure of bigeye tuna (Thunnus obesus) in the Indian Ocean inferred from mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar |

Chow, S., Okamoto, H., Miyabe, N., Hiramatsu, K., and Barut, N. (2000). Genetic divergence between Atlantic and Indo-Pacific stocks of bigeye tuna (Thunnus obesus) and admixture around South Africa. Molecular Ecology 9, 221–227.
Genetic divergence between Atlantic and Indo-Pacific stocks of bigeye tuna (Thunnus obesus) and admixture around South Africa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvF2rsr8%3D&md5=45847334cb484579ffbadf218781c4e0CAS |

Chow, S., Nakagawa, T., Suzuki, N., Takeyama, H., and Matsunaga, T. (2006). Phylogenetic relationships among Thunnus species inferred from rDNA ITS1 sequence. Journal of Fish Biology 68, 24–35.
Phylogenetic relationships among Thunnus species inferred from rDNA ITS1 sequence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvVajurs%3D&md5=9835460c1271276ad8d69d33e7ba8bf5CAS |

Clark, T. B., Ma, L., Saillant, E., and Gold, J. R. (2004). Microsatellite DNA markers for population-genetic studies of Atlantic bluefin tuna (Thunnus thynnus) and other species of genus Thunnus. Molecular Ecology Notes 4, 70.
Microsatellite DNA markers for population-genetic studies of Atlantic bluefin tuna (Thunnus thynnus) and other species of genus Thunnus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitlylsrk%3D&md5=15712ebfe0713e6bc45175dfb3e2b780CAS |

Cornuet, J. M., and Luikart, G. (1996). Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014.
| 1:STN:280:DyaK2s7jt1Kgsw%3D%3D&md5=29622ff7409341106795a0c0506ebcd6CAS |

COSEWIC (2010). COSEWIC Assessment on the Atlantic bluefin tuna Thunnus thynnus in Canada. Available at http://www.dfo-mpo.gc.ca/csas-sccs/Publications/SAR-AS/2011/2011_056-eng.pdf [Accessed September 2011].

Dekker, W. (2003). Worldwide decline of eel resources necessitates immediate action: Quebec Declaration of Concern. Fisheries (Bethesda, Md.) 28, 28–30.

Excoffier, L., and Lischer, H. E. L. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resource 10, 564–567.
Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows.Crossref | GoogleScholarGoogle Scholar |

FAO (1994). World review of highly migratory species and straddling stocks. FAO Fisheries Technical Paper 37, 1–70.

Fu, Y. X. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925.
| 1:STN:280:DyaK2svns1egtQ%3D%3D&md5=9533af978dedd342b3d54628652ad311CAS |

Goudet, J. (2001). FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available at http://www.unil.ch/Jahia/site/dee/op/edit/pid/36921 [Accessed February 2002].

Grant, W. S., and Bowen, B. W. (1998). Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. The Journal of Heredity 89, 415–426.
Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation.Crossref | GoogleScholarGoogle Scholar |

Harpending, R. C. (1994). Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Human Biology 66, 591–600.
| 1:STN:280:DyaK2cznsV2lsQ%3D%3D&md5=0e164d62bd6378f2230822d4c1f19fabCAS |

IATTC (2010). The fishery for tunas and billfishes in the Eastern Pacific Ocean. Fishery Status Report-Informe de la Situacion de la Pesqueria No. 8. IATTC, La Jolla, CA.

Itoh, T. (2009). Contributions of different spawning seasons to the stock of Pacific bluefin tuna Thunnus orientalis estimated from otolith daily increments and catch-at-length data of age-0 fish. Nippon Suisan Gakkai Shi 75, 412–418.
Contributions of different spawning seasons to the stock of Pacific bluefin tuna Thunnus orientalis estimated from otolith daily increments and catch-at-length data of age-0 fish.Crossref | GoogleScholarGoogle Scholar |

Johns, G. C., and Avise, J. C. (1998). A comparative summary of genetic distances in the vertebrates from the mitochondrial cytochrome b gene. Molecular Biology and Evolution 15, 1481–1490.
| 1:CAS:528:DyaK1cXntlOgsrc%3D&md5=0384c93ed086a21d40f18317bb402775CAS |

Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111–120.
A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmtFSktg%3D%3D&md5=b624e05c6d4a1dff9a13279cf8cb9101CAS |

Kocher, T. D., Thomas, W. K., Meyer, A., Edwards, S. V., Pabo, S., Villablanca, F. X., and Wilson, A. C. (1989). Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences of the United States of America 86, 6196–6200.
Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlvV2ksbw%3D&md5=84c19a64dd0b34d7e9bdc4692f41db92CAS |

Librado, P., and Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics (Oxford, England) 25, 1451–1452.
DnaSP v5: a software for comprehensive analysis of DNA polymorphism data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFeqtr8%3D&md5=aeedbae7f2c2127cbb96df867e042856CAS |

Luikart, G., Allendorf, F. W., Cornuet, J. M., and Sherwin, W. B. (1998). Distortion of allele frequency distributions provides a test for recent population bottlenecks. The Journal of Heredity 89, 238–247.
Distortion of allele frequency distributions provides a test for recent population bottlenecks.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1czitVKhsA%3D%3D&md5=c3f2868f67e77846191d117ed78454f8CAS |

Majikowski, J. (2007). Global fishery resources of tuna and tuna-like species. FAO Fisheries Technical Paper 483, 54..

Martínez, P., Gonzalez, E. G., Castilho, R., and Zardoya, R. (2006). Genetic diversity and historical demography of Atlantic bigeye tuna (Thunnus obesus). Molecular Phylogenetics and Evolution 39, 404–416.
Genetic diversity and historical demography of Atlantic bigeye tuna (Thunnus obesus).Crossref | GoogleScholarGoogle Scholar |

Menashes, E. H. (2011). Fisheries of the Pacific region; western Pacific region. Federal Register 76, 28422..

Nei, M., and Kumar, S. (2000). ‘Molecular Evolution and Phylogenetics.’ (Oxford University Press: New York.)

Posada, D., and Crandall, K. A. (1998). Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.
Modeltest: testing the model of DNA substitution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktlCltw%3D%3D&md5=721ac623fb9ab3b75c00f2a67ab80f86CAS |

Pritchard, J. K., Stephens, P., and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics 155, 945–959.
| 1:STN:280:DC%2BD3cvislKrtA%3D%3D&md5=263285c923a71bc162cca82d05d25828CAS |

Pujolar, J. M., Roldán, M. I., and Pla, C. (2003). Genetic analysis of tuna populations Thunnus thynnus and T. alalunga. Marine Biology 143, 613–621.
Genetic analysis of tuna populations Thunnus thynnus and T. alalunga.Crossref | GoogleScholarGoogle Scholar |

Raymond, M., and Rousset, F. (1995). An exact test for population differentiation. Evolution 49, 1280–1283.
An exact test for population differentiation.Crossref | GoogleScholarGoogle Scholar |

Rogers, A. R., and Harpending, H. (1992). Population growth makes waxes in the distribution of pairwise genetic differences. Molecular Biology and Evolution 9, 552–569.
| 1:STN:280:DyaK383mtFeitA%3D%3D&md5=302a74f128fa7350bbdc453a008a151bCAS |

Rohlf, F. J. (1973). Algorithm 76. Hierarchical clustering using the minimum spanning tree. The Computer Journal 16, 93–95.

Schneider, S., and Excoffier, L. (1999). Estimation of demographic parameters from the distribution of pairwise differences when the mutation rates very among sites: application to human mitochondrial DNA. Genetics 152, 1079–1089.
| 1:STN:280:DyaK1MzhvVynsA%3D%3D&md5=fde7edccc6d15e986ea4df99c3fce0c4CAS |

Slatkin, M., and Hudson, R. R. (1991). Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129, 555–562.
| 1:CAS:528:DyaK38Xhs12mtr8%3D&md5=4618b3a0d37fae61c71e81e28ca91d85CAS |

Smith, P. J., Griggs, L., and Chow, S. (2001). DNA identification of Pacific bluefin tuna (Thunnus orientalis) in the New Zealand fishery. New Zealand Journal of Marine and Freshwater Research 35, 843–850.
DNA identification of Pacific bluefin tuna (Thunnus orientalis) in the New Zealand fishery.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXpt1KmsLg%3D&md5=07cde694ebaca6dadf63089e73801f40CAS |

Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595.
| 1:CAS:528:DyaK3cXhslentA%3D%3D&md5=9400da1c044489e1f1be0940e57faab7CAS |

Takagi, M., Okamura, T., Chow, S., and Taniguchi, N. (1999). PCR primers for microsatellite loci in tuna species of the genus Thunnus and its application for population genetic study. Fisheries Science 65, 571–576.
| 1:CAS:528:DyaK1MXls1yhsb4%3D&md5=5985e5c338144f01bd82adcb6ff3d21bCAS |

Takagi, M., Okamura, T., Chow, S., and Taniguchi, N. (2001). Preliminary study of albacore (Thunnus alalunga) stock differentiation inferred from microsatellite DNA analysis. Fishery Bulletin 99, 697–701.

Tanaka, Y., Satoh, K., Iwahashi, M., and Yamada, H. (2006). Growth-dependent recruitment of Pacific bluefin tuna Thunnus orientalis in the northwestern Pacific Ocean. Marine Ecology Progress Series 319, 225–235.
Growth-dependent recruitment of Pacific bluefin tuna Thunnus orientalis in the northwestern Pacific Ocean.Crossref | GoogleScholarGoogle Scholar |

Tanaka, Y., Mohri, M., and Yamada, H. (2007). Distribution, growth and hatch date of juvenile Pacific bluefin tuna Thunnus orientalis in the coastal area of the Sea of Japan. Fisheries Science 73, 534–542.
Distribution, growth and hatch date of juvenile Pacific bluefin tuna Thunnus orientalis in the coastal area of the Sea of Japan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntlGitr0%3D&md5=be1c9f1ba094c0bf2d5bd220c4e40881CAS |

Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994). ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673–4680.
ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitlSgu74%3D&md5=3d9589656556d1ea4ec47378b431dde0CAS |

Tseng, M. C., Jean, C. T., Tsai, W. L., and Chen, N. C. (2009). Distinguishing between two sympatric Acanthopagrus species from Dapeng Bay, Taiwan, using morphometric and genetic characters. Journal of Fish Biology 74, 357–376.
Distinguishing between two sympatric Acanthopagrus species from Dapeng Bay, Taiwan, using morphometric and genetic characters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvVWrsbo%3D&md5=1c5697ae073b3e2caccfe32dcab772aeCAS |

Tseng, M. C., Shiao, J. C., and Hung, Y. H. (2011). Genetic identification of Thunnus orientalis, T. thynnus, and T. maccoyii by a cytochrome b gene analysis. Environmental Biology of Fishes 91, 103–115.
Genetic identification of Thunnus orientalis, T. thynnus, and T. maccoyii by a cytochrome b gene analysis.Crossref | GoogleScholarGoogle Scholar |

Ueyanagi, S. (1975). Thunnus commentary. In ‘Fisheries in Japan: Tuna’. (Uichi Noda Publishers, Tokyo.)

Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M., and Shipley, P. (2004). MICRO-CHECKER software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4, 535–538.
MICRO-CHECKER software for identifying and correcting genotyping errors in microsatellite data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFOktb8%3D&md5=1222689157d7dbcfb6837bfcaa70ded0CAS |

Viñas, J., and Tudela, S. (2009). A validated methodology for genetic identification of tuna species (genus Thunnus). PLoS ONE 7606, .

Viñas, J., Alvarado Bremer, J. R., and Pla, C. (2004). Inter-oceanic genetic differentiation among albacore (Thunnus alalunga) populations. Marine Biology 145, 225–232.
Inter-oceanic genetic differentiation among albacore (Thunnus alalunga) populations.Crossref | GoogleScholarGoogle Scholar |

Ward, R. D., Elliott, N. G., and Grewe, P. M. (1995). Allozyme and mitochondrial DNA separation of Pacific Northern bluefin tuna, Thunnus thynnus orientalis (Temminck and Schlegel), from Southern bluefin tuna, Thunnus maccoyii (Castelnau). Marine and Freshwater Research 46, 921–930.
Allozyme and mitochondrial DNA separation of Pacific Northern bluefin tuna, Thunnus thynnus orientalis (Temminck and Schlegel), from Southern bluefin tuna, Thunnus maccoyii (Castelnau).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XkvFyhtQ%3D%3D&md5=ba63e2f933bf55ab095e4d6dd58a473dCAS |

Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R., and Hebert, P. D. N. (2005). DNA barcoding Australia’s fish species. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 360, 1847–1857.
DNA barcoding Australia’s fish species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSjsrjK&md5=e1f0704a3c9093bcd61999b5e90e1aa2CAS |

Wu, G. C. C., Chiang, H. C., Chen, K. S., Hsu, C. C., and Yang, H. Y. (2009). Population structure of albacore (Thunnus alalunga) in the Northwestern Pacific Ocean inferred from mitochondrial DNA. Fisheries Research 95, 125–131.
Population structure of albacore (Thunnus alalunga) in the Northwestern Pacific Ocean inferred from mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar |

Yang, R. C., and Yeh, F. C. (1993). Multilocus structure in Pinus contoria Dougl. Theoretical and Applied Genetics 87, 568–576.
Multilocus structure in Pinus contoria Dougl.Crossref | GoogleScholarGoogle Scholar |