Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Trophic transfer between coastal habitats in a seagrass-dominated macrotidal embayment system as determined by stable isotope and fatty acid signatures

Hyun Je Park A , Eun Jung Choy B , Kun-Seop Lee C and Chang-Keun Kang A D
+ Author Affiliations
- Author Affiliations

A Ocean Science and Technology Institute, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea.

B Korea Polar Research Institute, Korea Institute of Ocean Science and Technology (KIOST), Incheon 406-840, Republic of Korea.

C Department of Biological Science, Pusan National University, Pusan 609-735, Republic of Korea.

D Corresponding author. Email: ckkang@postech.ac.kr

Marine and Freshwater Research 64(12) 1169-1183 https://doi.org/10.1071/MF12327
Submitted: 20 November 2012  Accepted: 27 May 2013   Published: 14 October 2013

Abstract

Stable isotope and fatty acid analyses were used to examine trophic transfers within a seagrass bed and its adjacent shallow subtidal and intertidal habitats in a macrotidal embayment system in Korea. Suspended particulate organic matter (POM), sedimentary organic matter, benthic microalgae (BMA), green and decomposing leaves of Zostera marina, its epiphytes and a variety of consumers in different habitats were collected between May and June 2007. Z. marina, epiphytes and BMA were more 13C-enriched than offshore POM. The δ13C values of consumers from all habitats overlapped with those of BMA, Z. marina leaves and epiphytes, indicating the trophic importance of locally produced organic matter. Tissues of the dominant consumers in all habitats contained high quantities of fatty acid biomarkers for diatoms, but very low quantities of fatty acid biomarkers for seagrass. Principal component analysis based on fatty acids of consumers showed a very complex distribution, suggesting that they have diverse nutritive origins irrespective of feeding guilds and habitats. The isotopic mixing model showed that epiphytes and BMA served as major nutritional sources for consumer production in the seagrass and the adjacent intertidal habitats. Moreover, our results suggest that epiphytes and BMA outwell into the adjacent shallow subtidal habitats and provide considerable trophic subsidy for consumer production.

Additional keywords: benthic microalgae, epiphytes, food webs, Zostera marina.


References

Alfaro, A. C., Thomas, F., Sergent, L., and Duxbury, M. (2006). Identification of trophic interactions within an estuarine food web (northern New Zealand) using fatty acid biomarkers and stable isotopes. Estuarine, Coastal and Shelf Science 70, 271–286.
Identification of trophic interactions within an estuarine food web (northern New Zealand) using fatty acid biomarkers and stable isotopes.Crossref | GoogleScholarGoogle Scholar |

Bae, J. H., and Hur, S. B. (1995). Comparison of dietary values in seven species of marine diatoms. Journal of Aquaculture 8, 355–366.

Behringer, D. C., and Butler, M. J. (2006). Stable isotope analysis of production and trophic relationships in a tropical marine hard-bottom community. Oecologia 148, 334–341.
Stable isotope analysis of production and trophic relationships in a tropical marine hard-bottom community.Crossref | GoogleScholarGoogle Scholar | 16485099PubMed |

Bligh, E. G., and Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37, 911–917.
A rapid method of total lipid extraction and purification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1MXhtVSgt70%3D&md5=1029e238ada74c5d65cfb5f4e0fc9661CAS | 13671378PubMed |

Budge, S. M., Iverson, S. J., Bowen, W. D., and Ackman, R. G. (2002). Among- and within-species variability in fatty acid signatures of marine fish and invertebrates on the Scotian Shelf Georges Bank, and southern Gulf of St. Lawrence. Canadian Journal of Fisheries and Aquatic Sciences 59, 886–898.
Among- and within-species variability in fatty acid signatures of marine fish and invertebrates on the Scotian Shelf Georges Bank, and southern Gulf of St. Lawrence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmsl2itbc%3D&md5=b0ef0897d4697cfdf38faa4de4f20137CAS |

Bunn, S. E., Loneragan, N. R., and Kempster, M. A. (1995). Effects of acid washing on stable isotope ratios of C and N in penaeid shrimp and seagrass: implication for food-web studies using multiple stable isotopes. Limnology and Oceanography 40, 622–625.
Effects of acid washing on stable isotope ratios of C and N in penaeid shrimp and seagrass: implication for food-web studies using multiple stable isotopes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXotFGms7c%3D&md5=bf5892aa067affd093fa03bfce206e08CAS |

Connolly, R. M., Gorman, D., and Guest, M. A. (2005). Movement of carbon among estuarine habitats and its assimilation by invertebrates. Oecologia 144, 684–691.
Movement of carbon among estuarine habitats and its assimilation by invertebrates.Crossref | GoogleScholarGoogle Scholar | 16001216PubMed |

Couch, C. A. (1989). Carbon and nitrogen stable isotopes of meiobenthos and their food resources. Estuarine, Coastal and Shelf Science 28, 433–441.
Carbon and nitrogen stable isotopes of meiobenthos and their food resources.Crossref | GoogleScholarGoogle Scholar |

Dame, R., Chrzanowski, T., Bildstein, K., Kjerve, B., McKellar, H., Nelson, D., Spurrier, J., Satncyk, S., Stevenson, H., Vernberg, J., and Zingmark, R. (1986). The outwelling hypothesis and North Inlet, South Carolina. Marine Ecology Progress Series 33, 217–229.
The outwelling hypothesis and North Inlet, South Carolina.Crossref | GoogleScholarGoogle Scholar |

Davenport, S. R., and Bax, N. J. (2002). A trophic study of a marine ecosystem off southeastern Australia using stable isotopes of carbon and nitrogen. Canadian Journal of Fisheries and Aquatic Sciences 59, 514–530.
A trophic study of a marine ecosystem off southeastern Australia using stable isotopes of carbon and nitrogen.Crossref | GoogleScholarGoogle Scholar |

Deegan, L. A., and Garritt, R. H. (1997). Evidence for spatial variability in estuarine food webs. Marine Ecology Progress Series 147, 31–47.
Evidence for spatial variability in estuarine food webs.Crossref | GoogleScholarGoogle Scholar |

DeNiro, N. J., and Epstein, S. (1978). Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42, 495–506.
Influence of diet on the distribution of carbon isotopes in animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXls1WrsbY%3D&md5=9bb120bc0314d4dea673eae40c4bb282CAS |

DeNiro, N. J., and Epstein, S. (1981). Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta 45, 341–351.
Influence of diet on the distribution of nitrogen isotopes in animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXktVGmtLw%3D&md5=a146714e55f452e2aca4ddda8fdde2e3CAS |

Drazen, J. C., Phleger, C. F., Guest, M. A., and Nichols, P. D. (2009). Lipid composition and diet inferences in abyssal macrourids of the eastern North Pacific. Marine Ecology Progress Series 387, 1–14.
Lipid composition and diet inferences in abyssal macrourids of the eastern North Pacific.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFKntbrP&md5=8e4e4ea8673f41401948161863a2c817CAS |

Duarte, C. M. (1990). Seagrass nutrient content. Marine Ecology Progress Series 67, 201–207.
Seagrass nutrient content.Crossref | GoogleScholarGoogle Scholar |

Dubois, S., Jean-Louis, B., Biuchaud, B., and Lefebvre, S. (2007). Isotope trophic-step fractionation of suspension-feeding species: Implications for food partitioning in coastal ecosystems. Journal of Experimental Marine Biology and Ecology 351, 121–128.
Isotope trophic-step fractionation of suspension-feeding species: Implications for food partitioning in coastal ecosystems.Crossref | GoogleScholarGoogle Scholar |

Dugan, J. E., Hubbard, D. M., McCrary, M. D., and Pierson, M. O. (2003). The response of macrofauna communities and shorebirds to macrophyte wrack subsidies on exposed sandy beaches of southern California. Estuarine, Coastal and Shelf Science 58, 25–40.
The response of macrofauna communities and shorebirds to macrophyte wrack subsidies on exposed sandy beaches of southern California.Crossref | GoogleScholarGoogle Scholar |

Fauchald, K., and Jumars, P. A. (1979). The diet of worms: a study of polychaete feeding guilds. Oceanography and Marine Biology – an Annual Review 17, 193–284.

Focken, U., and Becker, K. (1998). Metabolic fractionation of stable carbon isotopes: implications of different proximate compositions for studies of the aquatic food webs using δ13C data. Oecologia 115, 337–343.
Metabolic fractionation of stable carbon isotopes: implications of different proximate compositions for studies of the aquatic food webs using δ13C data.Crossref | GoogleScholarGoogle Scholar |

France, R. L. (1995). Carbon-13 enrichment in benthic compared to planktonic algae: food web implications. Marine Ecology Progress Series 124, 307–312.
Carbon-13 enrichment in benthic compared to planktonic algae: food web implications.Crossref | GoogleScholarGoogle Scholar |

Fry, B., and Sherr, E. B. (1984). δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contributions in Marine Science 27, 13–47.
| 1:CAS:528:DyaL2MXhs1ejurs%3D&md5=05ca107c584c40bb988fbe43e806204fCAS |

Fry, B., Lutes, R., Northam, M., Parker, P. L., and Ogden, J. (1982). A 13C/12C comparison of food webs in Caribbean seagrass meadows and coral reefs. Aquatic Botany 14, 389–398.
A 13C/12C comparison of food webs in Caribbean seagrass meadows and coral reefs.Crossref | GoogleScholarGoogle Scholar |

Guest, M. A., Connolly, R. M., and Loneragan, N. R. (2004). Carbon movement and assimilation by invertebrates in estuarine habitats at a scale of metres. Marine Ecology Progress Series 278, 27–34.
Carbon movement and assimilation by invertebrates in estuarine habitats at a scale of metres.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFWqur3E&md5=fd0b621eac9c7f36d1b1ba85c6e24a7cCAS |

Heck, K. L., Jr, and Orth, R. J. (1980). Seagrass habitats: The roles of habitat complexity, competition and predation in structuring associated fish and motile macroinvertebrate assemblages. In ‘Estuarine perspectives’. (Ed. V. S. Kennedy.) pp. 449–464. (Academic Press Inc: New York.)

Hong, S. Y., Park, K. Y., Park, C. W., et al. (2006). Marine invertebrates in Korean coasts. (Academy Publishing Co: Seoul.)

Hoshika, A., Sarker, J. M., Ishida, S., Mishima, Y., and Takai, N. (2006). Food web analysis of an eelgrass (Zostera marina L.) meadow and neighbouring sites in Mitsukuchi Bay using carbon and nitrogen stable isotope ratios. Aquatic Botany 85, 191–197.
Food web analysis of an eelgrass (Zostera marina L.) meadow and neighbouring sites in Mitsukuchi Bay using carbon and nitrogen stable isotope ratios.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntlGjtLY%3D&md5=5f34aaa561ad5b7b7e987c6911365695CAS |

Hyndes, G. A., and Lavery, P. S. (2005). Does transported seagrass provide an important trophic link in unvegetated, nearshore areas? Estuarine, Coastal and Shelf Science 63, 633–643.
Does transported seagrass provide an important trophic link in unvegetated, nearshore areas?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkslSks7k%3D&md5=752db97dcc8e741a8a1b10d87e244317CAS |

Ince, R., Hyndes, G. A., Lavery, P. S., and Vanderklift, M. A. (2007). Marine macrophytes directly enhance abundances of sandy beach fauna through provision of food and habitat. Estuarine, Coastal and Shelf Science 74, 77–86.
Marine macrophytes directly enhance abundances of sandy beach fauna through provision of food and habitat.Crossref | GoogleScholarGoogle Scholar |

Jaschinski, S., Brepohl, D. C., and Sommer, U. (2008). Carbon sources and trophic structure in an eelgrass Zostera marina bed, based on stable isotope and fatty acid analyses. Marine Ecology Progress Series 358, 103–114.
Carbon sources and trophic structure in an eelgrass Zostera marina bed, based on stable isotope and fatty acid analyses.Crossref | GoogleScholarGoogle Scholar |

Jennings, S., Reňones, O., Morales-Nin, B., Polunin, N. V. C., Moranta, J., and Coll, J. (1997). Spatial variation in the 15N and 13C stable isotopes composition of plants, invertebrates and fishes on Mediterranean reefs: implications for the study of trophic pathways. Marine Ecology Progress Series 146, 109–116.
Spatial variation in the 15N and 13C stable isotopes composition of plants, invertebrates and fishes on Mediterranean reefs: implications for the study of trophic pathways.Crossref | GoogleScholarGoogle Scholar |

Jung, M. H. (2003). Ecological and taxonomical characteristics of epiphytic diatom on seagrasses in Korea. PhD Thesis, Hanyang University, Seoul.

Kang, C. K., Kim, J. B., Lee, K. S., Kim, J. B., Lee, P. Y., and Hong, J. S. (2003). Trophic importance of benthic microalgae to macrozoobenthos in coastal bay systems in Korea: dual stable C and N isotope analyses. Marine Ecology Progress Series 259, 79–92.
Trophic importance of benthic microalgae to macrozoobenthos in coastal bay systems in Korea: dual stable C and N isotope analyses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvVCqurw%3D&md5=6145d4be503cc0dfb9e1301a671b12adCAS |

Kang, D., Cho, S., La, H., Kim, J. M., Na, J., and Myoung, J. G. (2006). Estimating spatial and vertical distribution of seagrass habitats using hydroacoustic system. Ocean and Polar Research 24, 55–61.

Kelly, J. R., and Scheibling, R. E. (2012). Fatty acids as dietary tracers in benthic food webs. Marine Ecology Progress Series 446, 1–22.
Fatty acids as dietary tracers in benthic food webs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsFeqsr8%3D&md5=7e1683e646999374f3ccf82afcfa4e0aCAS |

Kharlamenko, V. I., Kiyashko, S. I., Imbs, A. B., and Vyshkvartzev, D. I. (2001). Identification of food sources of invertebrates from the seagrass Zostera marina community using carbon and sulfur isotope ratio and fatty acid analyses. Marine Ecology Progress Series 220, 103–117.
Identification of food sources of invertebrates from the seagrass Zostera marina community using carbon and sulfur isotope ratio and fatty acid analyses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXpt1Gqu7c%3D&md5=928c8dcf7feb6c65a97fdff9a068bf0eCAS |

Klumpp, D. W., Salita-Espinosa, J. S., and Fortes, M. D. (1992). The role of epiphytic periphyton and macroinvertebrate grazers in the trophic flux of a tropical seagrass community. Aquatic Botany 43, 327–349.
The role of epiphytic periphyton and macroinvertebrate grazers in the trophic flux of a tropical seagrass community.Crossref | GoogleScholarGoogle Scholar |

Lebreton, B., Richard, P., Galois, R., Radenac, G., Pfléger, C., Guillou, G., Mornet, F., and Blanchard, G. (2011). Trophic importance of diatoms in an intertidal Zostera noltii seagrass bed: evidence from stable isotope and fatty acid analyses. Estuarine, Coastal and Shelf Science 92, 140–153.
Trophic importance of diatoms in an intertidal Zostera noltii seagrass bed: evidence from stable isotope and fatty acid analyses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsF2jtbs%3D&md5=401783e2c78255ea7a33ec5e634ee21cCAS |

Lee, S. Y., Lee, S. M., and Choi, C. I. (2005). Phenology and reproductive effort of two Zostera marina L. populations on the southern coast of Korea. Ocean and Polar Research 27, 67–74.
Phenology and reproductive effort of two Zostera marina L. populations on the southern coast of Korea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktFCqur4%3D&md5=4f17098b76a62c71732a20a547d49e8bCAS |

Lepoint, G., Nyssen, F., Gobert, S., Dauby, P., and Bouquegneau, J. M. (2000). Relative impact of a seagrass bed and its adjacent epilithic algal community in consumer diets. Marine Biology 136, 513–518.
Relative impact of a seagrass bed and its adjacent epilithic algal community in consumer diets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjvVCntLw%3D&md5=c2e6a5f5b75a25dcf6ca20ccbb0c372aCAS |

Logan, J. M., Jardine, T. D., Miller, T. J., Bunn, S. E., Cunjak, R. A., and Lutcabage, M. E. (2008). Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods. Journal of Animal Ecology 77, 838–846.
Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods.Crossref | GoogleScholarGoogle Scholar | 18489570PubMed |

Loneragan, N. R., Bunn, S. E., and Kellaway, D. M. (1997). Are mangroves and seagrasses sources of organic carbon for penaeid prawns in a tropical Australian estuary? A multiple stable-isotope study. Marine Biology 130, 289–300.
Are mangroves and seagrasses sources of organic carbon for penaeid prawns in a tropical Australian estuary? A multiple stable-isotope study.Crossref | GoogleScholarGoogle Scholar |

Mallela, J., and Harrod, C. (2008). δ13C and δ15N reveal significant differences in the coastal foodwebs of the seas surrounding Trinidad and Tobago. Marine Ecology Progress Series 368, 41–51.
δ13C and δ15N reveal significant differences in the coastal foodwebs of the seas surrounding Trinidad and Tobago.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlaksrfE&md5=a0e9f7a82b5aeed153bc46e1768c0431CAS |

Mann, K. H. (1988). Production and use of detritus in various freshwater, estuarine, and coastal marine ecosystems. Limnology and Oceanography 33, 910–930.
Production and use of detritus in various freshwater, estuarine, and coastal marine ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlvFKmur8%3D&md5=1802f0270c6f3f07660339173ed5fdc7CAS |

Marguillier, S., van der Velde, G., Dehairs, F., Hemminga, M. A., and Rajagopal, S. (1997). Trophic relationships in an interlinked mangrove-seagrass ecosystem as traced by δ13C and δ15N. Marine Ecology Progress Series 151, 115–121.
Trophic relationships in an interlinked mangrove-seagrass ecosystem as traced by δ13C and δ15N.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkvFWhtr0%3D&md5=2ed0a2d805df148f34016c8d252777b1CAS |

McCutchan, J. H., Lewis, W. M., Kendall, C., and McGrath, C. C. (2003). Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulphur. Oikos 102, 378–390.
Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulphur.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsl2qurg%3D&md5=43a242329c53b57bf19fffc6d966abbdCAS |

McRoy, C. P., and McMillan, C. (1977). Ecology and physiology of seagrasses. In ‘Seagrass Ecosystems’. (Eds. C. P. McRoy, and C. Helfferich) pp. 70–77. (Marcel Dekker: New York.)

Metcalfe, L. D., Schmitz, A. A., and Pelka, J. R. (1966). Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Analytical Chemistry 38, 514–515.
Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28XosFKltA%3D%3D&md5=394bf1c279df74381d8dd68203bf7338CAS |

Michener, R. H., and Schell, D. M. (1994). Stable isotope ratios as tracers in marine aquatic food webs. In ‘Stable isotopes in ecology and environmental science’ (Eds. K. Lajtha and R. H. Michener) pp. 138–157. (Blackwell Scientific Publications: Oxford.)

Minagawa, M., and Wada, E. (1984). Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochimica et Cosmochimica Acta 48, 1135–1140.
Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXktlOms7w%3D&md5=1952f633b97cc1bb4dfd173c9243f67fCAS |

Moncreiff, C. A., and Sullivan, M. J. (2001). Trophic importance of epiphytic algae in subtropical seagrass beds: evidence from multiple stable isotope analyses. Marine Ecology Progress Series 215, 93–106.
Trophic importance of epiphytic algae in subtropical seagrass beds: evidence from multiple stable isotope analyses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmslWltLg%3D&md5=fca56a20c452e87370209e9d92968eb6CAS |

Napolitano, G. E., Pollero, R. J., Gayoso, A. M., MacDonald, B. A., and Thompson, R. J. (1997). Fatty acids as trophic markers of phytoplankton blooms in the Bah?a Blanca Estuary (Buenos Aires, Argentina) and in Trinity Bay (Newfoundland, Canada). Biochemical Systematics and Ecology 25, 739–755.
Fatty acids as trophic markers of phytoplankton blooms in the Bah?a Blanca Estuary (Buenos Aires, Argentina) and in Trinity Bay (Newfoundland, Canada).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXislSrtg%3D%3D&md5=4f2f55da1248bddb23fd99892d3d5ba9CAS |

Orth, R. J., and Heck, K. L. (1980). Structural components of eelgrass (Zostera marina) meadows in the lower Chesapeake Bay: fishes. Estuaries 3, 278–288.
Structural components of eelgrass (Zostera marina) meadows in the lower Chesapeake Bay: fishes.Crossref | GoogleScholarGoogle Scholar |

Page, H. M., and Lastra, M. (2003). Diet of intertidal bivalves in the Ria de Arosa (NW Spain): evidence from stable C and N isotope analysis. Marine Biology 143, 519–532.
Diet of intertidal bivalves in the Ria de Arosa (NW Spain): evidence from stable C and N isotope analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvVWqs70%3D&md5=f89010a1082b67c3cd9cae0e40ecd2d1CAS |

Parnell, A. C., Inger, R., Bearhop, S., and Jackson, A. L. (2010). Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5, e9672.
Source partitioning using stable isotopes: coping with too much variation.Crossref | GoogleScholarGoogle Scholar | 20300637PubMed |

Parrish, C. C., Mckenzie, C. H., MacDonald, B. A., and Hatfield, E. A. (1995). Seasonal studies of seston lipids in relation to microplankton species composition and scallop growth in South Broad Cove, Newfoundland. Marine Ecology Progress Series 129, 151–164.
Seasonal studies of seston lipids in relation to microplankton species composition and scallop growth in South Broad Cove, Newfoundland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xhs1ejtLg%3D&md5=2108f1dd35a2392c29d5faef306c4d4cCAS |

Peterson, B. J., and Fry, B. (1987). Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18, 293–320.
Stable isotopes in ecosystem studies.Crossref | GoogleScholarGoogle Scholar |

Polis, G. A., and Hurd, S. D. (1996). Linking marine and terrestrial food webs: allochthonous input from the ocean supports high secondary productivity on small islands and coastal land communities. American Naturalist 147, 396–423.
Linking marine and terrestrial food webs: allochthonous input from the ocean supports high secondary productivity on small islands and coastal land communities.Crossref | GoogleScholarGoogle Scholar |

Reise, K. (1985). Tidal flat ecology: an experimental approach to species interactions. (Springer-Verlag Press: Berlin.)

Reuss, N., and Poulsen, L. K. (2002). Evaluation of fatty acids as biomarkers for a natural plankton community. A field study of a spring bloom and a post-bloom period off West Graeenland. Marine Biology 141, 423–434.
Evaluation of fatty acids as biomarkers for a natural plankton community. A field study of a spring bloom and a post-bloom period off West Graeenland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptFaltLw%3D&md5=4ce9f0ea49084676ebda3af3ccefd22fCAS |

Riera, P., Stal, L. J., Nieuwenhuiz, J., Richard, P., Blanchard, G., and Gentil, F. (1999). Determination of food sources for benthic invertebrates in a salt marsh (Aiguillon Bay, France) by carbon and nitrogen stable isotopes: importance of locally produced sources. Marine Ecology Progress Series 187, 301–307.
Determination of food sources for benthic invertebrates in a salt marsh (Aiguillon Bay, France) by carbon and nitrogen stable isotopes: importance of locally produced sources.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisF2mtA%3D%3D&md5=4be97b91edb0c593752494611b52f5daCAS |

Schmidt, K., Atkinson, A., Petzke, K. J., Voss, M., and Pond, D. W. (2006). Protozoans as a food source for Antarctic krill, Euphausia superba: complementary insights from stomach content, fatty acids, and stable isotopes. Limnology and Oceanography 51, 2409–2427.
Protozoans as a food source for Antarctic krill, Euphausia superba: complementary insights from stomach content, fatty acids, and stable isotopes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVOisr7M&md5=3867e9c8dd3a31306804da5eb8a73844CAS |

Stephenson, R. L., Tan, F. C., and Mann, K. H. (1986). Use of stable carbon isotope ratios to compare plant material and potential consumers in a seagrass bed and a kelp bed in Nova Scotia, Canada. Marine Ecology Progress Series 30, 1–7.
Use of stable carbon isotope ratios to compare plant material and potential consumers in a seagrass bed and a kelp bed in Nova Scotia, Canada.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XksFyhtb8%3D&md5=f61ea9af079046a27bf6a583211c5e2cCAS |

Thayer, G. W., Adams, S. M., and Kacroix, M. W. (1975). Structural and functional aspects of a recently established Zostera marina community. In ‘Estuarine research’, vol. 1. (Ed. L. E. Cronin) pp. 518–540. (Academic Press: New York.)

Thomas, C. J., and Cahoon, L. B. (1993). Stable isotope analyses differentiate between different trophic pathways supporting rocky-reef fishes. Marine Ecology Progress Series 95, 19–24.
Stable isotope analyses differentiate between different trophic pathways supporting rocky-reef fishes.Crossref | GoogleScholarGoogle Scholar |

Thresher, R. E., Nichols, P. D., Gunn, J. S., Bruce, B. D., and Furlani, D. M. (1992). Seagrass detritus as the basis of a coastal planktonic food chain. Limnology and Oceanography 37, 1754–1758.
Seagrass detritus as the basis of a coastal planktonic food chain.Crossref | GoogleScholarGoogle Scholar |

Tieszen, L. L., Boutton, T. W., Tesdahl, K. G., and Slade, N. A. (1983). Fractionation and turnover of stable carbon isotopes in animal tissues: implications for δ13C analysis of diet. Oecologia 57, 32–37.
Fractionation and turnover of stable carbon isotopes in animal tissues: implications for δ13C analysis of diet.Crossref | GoogleScholarGoogle Scholar |

Valentine, J. F., and Heck, K. L. (1999). Seagrass herbivory: evidence for the continued grazing of marine grasses. Marine Ecology Progress Series 176, 291–302.
Seagrass herbivory: evidence for the continued grazing of marine grasses.Crossref | GoogleScholarGoogle Scholar |

Viso, A. C., and Marty, J. C. (1993). Fatty acids from 28 marine microalgae. Phytochemistry 34, 1521–1533.
Fatty acids from 28 marine microalgae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXntlSktw%3D%3D&md5=36a4c423072382a4e4bb1c7b620529e1CAS |

Vizzini, S., and Mazzola, A. (2006). Sources and transfer of organic matter in food webs of a Mediterranean coastal environment: evidence for spatial variability. Estuarine, Coastal and Shelf Science 66, 459–467.
Sources and transfer of organic matter in food webs of a Mediterranean coastal environment: evidence for spatial variability.Crossref | GoogleScholarGoogle Scholar |

Vizzini, S., Sara, G., Michener, R. H., and Mazzola, A. (2002). The role and contribution of the seagrass Posidonia oceanica Delile organic matter for secondary consumers as revealed by carbon and nitrogen stable isotope analysis. Acta Oecologica 23, 277–285.
The role and contribution of the seagrass Posidonia oceanica Delile organic matter for secondary consumers as revealed by carbon and nitrogen stable isotope analysis.Crossref | GoogleScholarGoogle Scholar |