Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH FRONT

NZOA-ON: the New Zealand Ocean Acidification Observing Network

J. M. Vance https://orcid.org/0000-0002-5134-815X A E , K. I. Currie C , C. S. Law A D , J. Murdoch B and J. Zeldis E
+ Author Affiliations
- Author Affiliations

A Department of Marine Science, University of Otago, 310 Castle Street, Dunedin, 9016, New Zealand.

B Department of Chemistry, University of Otago, Union Place, Dunedin, 9016, New Zealand.

C National Institute of Water and Atmospheric Research – University of Otago Centre for Oceanography, Union Place, Dunedin, 9016, New Zealand.

D National Institute of Water and Atmospheric Research, 301 Evans Bay Parade, Wellington, 6021, New Zealand.

E National Institute of Water and Atmospheric Research, 10 Kyle Street, Christchurch, 8011, New Zealand.

F Corresponding author. Email: jesse.vance@icloud.com

Marine and Freshwater Research 71(3) 281-299 https://doi.org/10.1071/MF19222
Submitted: 26 June 2019  Accepted: 2 September 2019   Published: 3 December 2019

Abstract

A national observing network has been operating over the past 4 years to inform the scientific and economic challenges of ocean acidification (OA) facing New Zealand. The New Zealand Ocean Acidification Observing Network (NZOA-ON) consists of 12 sites across varied coastal ecosystems. These ecosystems range from oligotrophic ocean-dominated systems to eutrophic river-dominated systems, with sites that are pristine or affected by agriculture and urbanisation. Fortnightly measurements of total alkalinity and dissolved inorganic carbon provide the baseline of carbonate chemistry in these varied ecosystems and will facilitate detection of future changes, as well as providing a present-day baseline. The National Institute of Water and Atmospheric Research and the University of Otago have developed a ‘grass-roots’ sampling program, providing training and equipment that enable sampling partners to collect field samples for analyses at a central laboratory. NZOA-ON leverages existing infrastructure and partnerships to maximise data captured for understanding the drivers of chemical changes associated with OA and ecological responses. NZOA-ON coordinates with and contributes to global initiatives to understand and mitigate the broader impacts of OA. A description of NZOA-ON is presented with preliminary analyses and comparison of data from different sites after the first 4 years of the network.

Additional keywords: aquaculture, biogeochemical cycling, carbonate chemistry, coastal ecosystem monitoring, cooperative research, marine resource management, regional ocean modelling system, shellfish industry.


References

Anderson, K. A., and Downing, J. A. (2006). Dry and wet atmospheric deposition of nitrogen, phosphorus and silicon in an agricultural region. Water, Air, and Soil Pollution 176, 351–374.
Dry and wet atmospheric deposition of nitrogen, phosphorus and silicon in an agricultural region.Crossref | GoogleScholarGoogle Scholar |

Balch, W. M. (2005). Calcium carbonate measurements in the surface global ocean based on moderate-resolution imaging spectroradiometer data. Journal of Geophysical Research 110, C07001.
Calcium carbonate measurements in the surface global ocean based on moderate-resolution imaging spectroradiometer data.Crossref | GoogleScholarGoogle Scholar |

Barbier, E. B., Koch, E. W., Silliman, B. R., Hacker, S. D., Wolanski, E., Primavera, J., Granek, E. F., Polasky, S., Aswani, S., Cramer, L. A., Stoms, D. M., Kennedy, C. J., Bael, D., Kappel, C. V., Perillo, G. M. E., and Reed, D. J. (2008). Coastal ecosystem-based management with nonlinear ecological functions and values. Science 319, 321–323.
Coastal ecosystem-based management with nonlinear ecological functions and values.Crossref | GoogleScholarGoogle Scholar | 18202288PubMed |

Barton, A., Hales, B., Waldbusser, G. G., Langdon, C., and Feely, R. A. (2012). The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: implications for near-term ocean acidification effects. Limnology and Oceanography 57, 698–710.
The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: implications for near-term ocean acidification effects.Crossref | GoogleScholarGoogle Scholar |

Barton, A., Waldbusser, G. G., Feely, R. A., Weisberg, S. B., Newton, J. A., Hales, B., Cudd, S., Eudeline, B., Langdon, C. J., Jefferds, I., King, T., Suhrbier, A., and McLaughlin, K. (2015). Impacts of coastal acidification on the Pacific Northwest shellfish industry and adaptation strategies implemented in response. Oceanography 28, 146–159.
Impacts of coastal acidification on the Pacific Northwest shellfish industry and adaptation strategies implemented in response.Crossref | GoogleScholarGoogle Scholar |

Bates, N. R., Best, M. H. P., Neely, K., Garley, R., Dickson, A. G., and Johnson, R. J. (2012). Detecting anthropogenic carbon dioxide uptake and ocean acidification in the North Atlantic Ocean. Biogeosciences 9, 2509–2522.
Detecting anthropogenic carbon dioxide uptake and ocean acidification in the North Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar |

Bates, N., Astor, Y., Church, M., Currie, K., Dore, J., Gonaález-Dávila, M., Lorenzoni, L., Muller-Karger, F., Olafsson, J., and Santa-Casiano, M. (2014). A time-series view of changing ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification. Oceanography (Washington, D.C.) 27, 126–141.
A time-series view of changing ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification.Crossref | GoogleScholarGoogle Scholar |

Bhattacharjee, Y. (2005). Citizen scientists supplement work of Cornell researchers. Science 308, 1402–1403.
Citizen scientists supplement work of Cornell researchers.Crossref | GoogleScholarGoogle Scholar | 15933178PubMed |

Bonney, R., Cooper, C. B., Dickinson, J., Kelling, S., Phillips, T., Rosenberg, K. V., and Shirk, J. (2009). Citizen science: a developing tool for expanding science knowledge and scientific literacy. Bioscience 59, 977–984.
Citizen science: a developing tool for expanding science knowledge and scientific literacy.Crossref | GoogleScholarGoogle Scholar |

Borges, A. V., and Gypens, N. (2010). Carbonate chemistry in the coastal zone responds more strongly to eutrophication than ocean acidification. Limnology and Oceanography 55, 346–353.
Carbonate chemistry in the coastal zone responds more strongly to eutrophication than ocean acidification.Crossref | GoogleScholarGoogle Scholar |

Bostock, H. C., Mikaloff Fletcher, S. E., and Williams, M. J. M. (2013). Estimating carbonate parameters from hydrographic data for the intermediate and deep waters of the Southern Hemisphere oceans. Biogeosciences 10, 6199–6213.
Estimating carbonate parameters from hydrographic data for the intermediate and deep waters of the Southern Hemisphere oceans.Crossref | GoogleScholarGoogle Scholar |

Brix, H., Currie, K. I., and Mikaloff Fletcher, S. E. (2013). Seasonal variability of the carbon cycle in subantarctic surface water in the South West Pacific. Global Biogeochemical Cycles 27, 200–211.
Seasonal variability of the carbon cycle in subantarctic surface water in the South West Pacific.Crossref | GoogleScholarGoogle Scholar |

Cai, W. J. (2011). Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration? Annual Review of Marine Science 3, 123–145.
Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration?Crossref | GoogleScholarGoogle Scholar | 21329201PubMed |

Capson, T. L., and Guinotte, J. (2014). Future proofing New Zealand’s shellfish aquaculture: monitoring and adaptation to ocean acidification. Ministry for Primary Industry, Wellington, New Zealand.

Carstensen, J., and Duarte, C. M. (2019). Drivers of pH variability in coastal ecosystems. Environmental Science & Technology 53, 4020–4029.
Drivers of pH variability in coastal ecosystems.Crossref | GoogleScholarGoogle Scholar |

Carter, B. R., Frölicher, T. L., Dunne, J. P., Rodgers, K. B., Slater, R. D., and Sarmiento, J. L. (2016). When can ocean acidification impacts be detected from decadal alkalinity measurements? Global Biogeochemical Cycles 30, 595–612.
When can ocean acidification impacts be detected from decadal alkalinity measurements?Crossref | GoogleScholarGoogle Scholar |

Chan, N. C., and Connolly, S. R. (2013). Sensitivity of coral calcification to ocean acidification: a meta-analysis. Global Change Biology 19, 282–290.
Sensitivity of coral calcification to ocean acidification: a meta-analysis.Crossref | GoogleScholarGoogle Scholar | 23504739PubMed |

Chao, Y., Farrara, J. D., Zhang, H., Armenta, K. J., Centurioni, L., Chavez, F., Girton, J. B., Rudnick, D., and Walter, R. K. (2018). Development, implementation, and validation of a California coastal ocean modeling, data assimilation, and forecasting system. Deep-sea Research. Part II, Topical Studies in Oceanography 151, 49–63.
Development, implementation, and validation of a California coastal ocean modeling, data assimilation, and forecasting system.Crossref | GoogleScholarGoogle Scholar |

Chesney, T. A., Montero, J., Heppell, S., and Graham, J. (2013). Interannual variability of Humboldt squid (Dosidicus gigas) off Oregon and southern Washington. California Cooperative Oceanic Fisheries Investigations Reports 54, 1–12.

Chiswell, S. M., Bostock, H. C., Sutton, P. J. H., and Williams, M. J. M. (2015). Physical oceanography of the deep seas around New Zealand: a review. New Zealand Journal of Marine and Freshwater Research 49, 286–317.
Physical oceanography of the deep seas around New Zealand: a review.Crossref | GoogleScholarGoogle Scholar |

Cornwall, C. E., and Eddy, T. D. (2015). Effects of near-future ocean acidification, fishing, and marine protection on a temperate coastal ecosystem. Conservation Biology 29, 207–215.
Effects of near-future ocean acidification, fishing, and marine protection on a temperate coastal ecosystem.Crossref | GoogleScholarGoogle Scholar | 25354555PubMed |

Cornwall, C. E., Hepburn, C. D., McGraw, C. M., Currie, K. I., Pilditch, C. A., Hunter, K. A., Boyd, P. W., and Hurd, C. L. (2013). Diurnal fluctuations in seawater pH influence the response of a calcifying macroalga to ocean acidification. Proceedings of the Royal Society of London – B. Biological Sciences 280, 20132201.
Diurnal fluctuations in seawater pH influence the response of a calcifying macroalga to ocean acidification.Crossref | GoogleScholarGoogle Scholar |

Currie, K. I., Reid, M. R., and Hunter, K. A. (2011). Interannual variability of carbon dioxide drawdown by subantarctic surface water near New Zealand. Biogeochemistry 104, 23–34.
Interannual variability of carbon dioxide drawdown by subantarctic surface water near New Zealand.Crossref | GoogleScholarGoogle Scholar |

Currie, K. I., Reid, M. R., and Hunter, K. A. (2018). Sea surface measurements during the Time Series Munida cruises. (National Institute of Water and Atmospheric Research: Dunedin, New Zealand.) Available at https://marinedata.niwa.co.nz/assets/NZOA-ON/data/MunidaTimeSeries.zip/ [Verified 12 October 2019].

Dickson, A. G., Wesolowski, D. J., Palmer, D. A., and Mesmer, R. E (1990). Dissociation constant of bisulfate ion in aqueous sodium chloride solutions to 250°C. Journal of Physical Chemistry 94, 7978–7985.
Dissociation constant of bisulfate ion in aqueous sodium chloride solutions to 250°C.Crossref | GoogleScholarGoogle Scholar |

Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A. (2009). Ocean acidification: the other CO2 problem. Annual Review of Marine Science 1, 169–192.
Ocean acidification: the other CO2 problem.Crossref | GoogleScholarGoogle Scholar | 21141034PubMed |

Duarte, C. M., Hendriks, I. E., Moore, T. S., Olsen, Y. S., Steckbauer, A., Ramajo, L., Carstensen, J., Trotter, J. A., and McCulloch, M. (2013). Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH. Estuaries and Coasts 36, 221–236.
Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH.Crossref | GoogleScholarGoogle Scholar |

Elliott, A. H., Semadeni-Davies, A. F., Shankar, U., Zeldis, J. R., Wheeler, D. M., Plew, D. R., Rys, G. J., and Harris, S. R. (2016). A national-scale GIS-based system for modelling impacts of land use on water quality. Environmental Modelling & Software 86, 131–144.
A national-scale GIS-based system for modelling impacts of land use on water quality.Crossref | GoogleScholarGoogle Scholar |

Fatland, R., MacCready, P., and Oscar, N. (2016). LiveOcean. In ‘Cloud Computing in Ocean and Atmospheric Sciences’. (Eds T. Vance, N. Merati, C. Yang, and M. Yuan.) pp. 277–296. (Elsevier, Inc.: Oxford, UK.) 10.1016/B978-0-12-803192-6.00014-1

Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, V. J., and Millero, F. J. (2004). Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305, 362–366.
Impact of anthropogenic CO2 on the CaCO3 system in the oceans.Crossref | GoogleScholarGoogle Scholar | 15256664PubMed |

Feely, R. A., Alin, S. R., Newton, J., Sabine, C. L., Warner, M., Devol, A., Krembs, C., and Maloy, C. (2010). The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuarine, Coastal and Shelf Science 88, 442–449.
The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary.Crossref | GoogleScholarGoogle Scholar |

Fichot, C. G., and Benner, R. (2014). The fate of terrigenous dissolved organic carbon in a river-influenced ocean margin. Global Biogeochemical Cycles 28, 300–318.
The fate of terrigenous dissolved organic carbon in a river-influenced ocean margin.Crossref | GoogleScholarGoogle Scholar |

Gagnon, A. C., Adkins, J. F., and Erez, J. (2012). Seawater transport during coral biomineralization. Earth and Planetary Science Letters 329–330, 150–161.
Seawater transport during coral biomineralization.Crossref | GoogleScholarGoogle Scholar |

Gattuso, J. P., Frankignoulle, M., and Wollast, R. (1998). Carbon and carbonate metabolism in coastal aquatic ecosystems. Annual Review of Ecology Evolution and Systematics 29, 405–434.
Carbon and carbonate metabolism in coastal aquatic ecosystems.Crossref | GoogleScholarGoogle Scholar |

Gaylord, B., Kroeker, K. J., Sunday, J. M., Anderson, K. M., Barry, J. P., Brown, N. E., Connell, S. D., Dupont, S., Fabricius, K. E., Hall-Spencer, J. M., Klinger, T., Milazzo, M., Munday, P. L., Russell, B. D., Sanford, E., Schreiber, S. J., Thiyagarajan, V., Vaughan, M. L. H., Widdicombe, S., and Harley, C. D. G. (2015). Ocean acidification through the lens of ecology theory. Ecology 96, 3–15.
Ocean acidification through the lens of ecology theory.Crossref | GoogleScholarGoogle Scholar | 26236884PubMed |

Gazeau, F., Parker, L. M., Comeau, S., Gattuso, J.-P., O’Connor, W. A., Martin, S., Pörtner, H.-O., and Ross, P. M. (2013). Impacts of ocean acidification on marine shelled molluscs. Marine Biology 160, 2207–2245.
Impacts of ocean acidification on marine shelled molluscs.Crossref | GoogleScholarGoogle Scholar |

Gazeau, F., Sallon, A., Pitta, P., Tsiola, A., Maugendre, L., Giani, M., Celussi, M., Pedrotti, M. L., Marro, S., and Guieu, C. (2017). Limited impact of ocean acidification on phytoplankton community structure and carbon export in an oligotrophic environment: results from two short-term mesocosm studies in the Mediterranean Sea. Estuarine, Coastal and Shelf Science 186, 72–88.
Limited impact of ocean acidification on phytoplankton community structure and carbon export in an oligotrophic environment: results from two short-term mesocosm studies in the Mediterranean Sea.Crossref | GoogleScholarGoogle Scholar |

Hadfield, M. G., Rickard, G. J., and Uddstrom, M. J. (2007). A hydrodynamic model of Chatham Rise, New Zealand. New Zealand Journal of Marine and Freshwater Research 41, 239–264.
A hydrodynamic model of Chatham Rise, New Zealand.Crossref | GoogleScholarGoogle Scholar |

Hale, R., Calosi, P., McNeill, L., Mieszkowska, N., and Widdicombe, S. (2011). Predicted levels of future ocean acidification and temperature rise could alter community structure and biodiversity in marine benthic communities. Oikos 120, 661–674.
Predicted levels of future ocean acidification and temperature rise could alter community structure and biodiversity in marine benthic communities.Crossref | GoogleScholarGoogle Scholar |

Hales, B., Karp-Boss, L., Perlin, A., and Wheeler, P. A. (2006). Oxygen production and carbon sequestration in an upwelling coastal margin. Global Biogeochemical Cycles 20, GB3001.
Oxygen production and carbon sequestration in an upwelling coastal margin.Crossref | GoogleScholarGoogle Scholar |

Hinga, K. R., Keller, A. A., and Oviatt, C. A. (1991). Atmospheric deposition and nitrogen inputs to coastal waters. Ambio 20, 256–260.

Hofmann, G. E., Smith, J. E., Johnson, K. S., Send, U., Levin, L. A., Micheli, F., Paytan, A., Price, N. N., Peterson, B., Takeshita, Y., Matson, P. G., Crook, E. D., Kroeker, K. J., Gambi, M. C., Rivest, E. B., Frieder, C. A., Yu, P. C., and Martz, T. R. (2011). High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS One 6, e28983.
High-frequency dynamics of ocean pH: a multi-ecosystem comparison.Crossref | GoogleScholarGoogle Scholar | 22205986PubMed |

Honisch, B., Ridgwell, A., Schmidt, D. N., Thomas, E., Gibbs, S. J., Sluijs, A., Zeebe, R., Kump, L., Martindale, R. C., Greene, S. E., Kiessling, W., Ries, J., Zachos, J. C., Royer, D. L., Barker, S., Marchitto, T. M., Moyer, R., Pelejero, C., Ziveri, P., Foster, G. L., and Williams, B. (2012). The geological record of ocean acidification. Science 335, 1058–1063.
The geological record of ocean acidification.Crossref | GoogleScholarGoogle Scholar | 22383840PubMed |

Hurd, C. L., Lenton, A., Tilbrook, B., and Boyd, P. W. (2018). Current understanding and challenges for oceans in a higher-CO2 world. Nature Climate Change 8, 686–694.
Current understanding and challenges for oceans in a higher-CO2 world.Crossref | GoogleScholarGoogle Scholar |

Ilyina, T., Zeebe, R. E., and Brewer, P. G. (2010). Future ocean increasingly transparent to low-frequency sound owing to CO2 emissions. Nature Geoscience 3, 18–22.
Future ocean increasingly transparent to low-frequency sound owing to CO2 emissions.Crossref | GoogleScholarGoogle Scholar |

Jewett, E., Mataki, M., Glassey, N., Keener, P., Moore, T., and Straza, T. (2014). ‘Proceedings of an International Workshop on Ocean Acidification: State-of-the-Science Considerations for Small Island Developing States (SIDS)’, Apia, Samoa. (US Department of Commerce; National Oceanic and Atmospheric Administration; New Zealand Ministry of Foreign Affairs and Trade; Secretariat of the Pacific Regional Environment Programme: Apia, Samoa.)

Jin, P., Wang, T., Liu, N., Dupont, S., Beardall, J., Boyd, P. W., Riebesell, U., and Gao, K. (2015). Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels. Nature Communications 6, 8714.
Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels.Crossref | GoogleScholarGoogle Scholar | 26503801PubMed |

Johnson, T. R. (2007). Benefits and organization of cooperative research for fisheries management. ICES Journal of Marine Science 64, 834–840.
Benefits and organization of cooperative research for fisheries management.Crossref | GoogleScholarGoogle Scholar |

Johnson, T. R. (2009). Cooperative research and knowledge flow in the marine commons Lessons from the Northeast United States. The International Journal of the Commons 4, 251–272.
Cooperative research and knowledge flow in the marine commons Lessons from the Northeast United States.Crossref | GoogleScholarGoogle Scholar |

Johnson, J., Bell, J., and Gupta, A. S. (2015). Pacific Islands ocean acidification vulnerability assessment. (Secretariat of the Pacific Regional Environment Programme: Apia, Samoa.) Available at https://www.sprep.org/attachments/Publications/CC/ocean-acidification.pdf [Verified 24 November 2019].

Johsi, L., Arevalo, L., Luque, N., Alegre, J., and Sinclair, F. (2004). Local ecological knowledge in natural resource management. In ‘Bridging Scales and Epistemologies’. (Alexandria, Egypt.) Available at https://www.millenniumassessment.org/documents/bridging/papers/joshi.laxman.pdf [Verified 24 November 2019].

Jones, K. N., Currie, K. I., McGraw, C. M., and Hunter, K. A. (2013). The effect of coastal processes on phytoplankton biomass and primary production within the near-shore Subtropical Frontal Zone. Estuarine, Coastal and Shelf Science 124, 44–55.
The effect of coastal processes on phytoplankton biomass and primary production within the near-shore Subtropical Frontal Zone.Crossref | GoogleScholarGoogle Scholar |

Keeling, C. D., Piper, S. C., Bacastow, R. B., Wahlen, M., Whorf, T. P., Heimann, M., and Meijer, H. A. (2001). Exchanges of atmospheric CO2 and 13CO2 with the terrestrial biosphere and oceans from 1978 to 2000. Global aspects, SIO Reference Series, number 01–06. Scripps Institution of Oceanography, San Diego, CA, USA.

Keul, N., Langer, G., de Nooijer, L. J., and Bijma, J. (2013). Effect of ocean acidification on the benthic foraminifera Ammonia sp. is caused by a decrease in carbonate ion concentration. Biogeosciences 10, 6185–6198.
Effect of ocean acidification on the benthic foraminifera Ammonia sp. is caused by a decrease in carbonate ion concentration.Crossref | GoogleScholarGoogle Scholar |

Kroeker, K. J., Kordas, R. L., Crim, R. N., and Singh, G. G. (2010). Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecology Letters 13, 1419–1434.
Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms.Crossref | GoogleScholarGoogle Scholar | 20958904PubMed |

Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh, G. S., Duarte, C. M., and Gattuso, J. P. (2013a). Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Global Change Biology 19, 1884–1896.
Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming.Crossref | GoogleScholarGoogle Scholar | 23505245PubMed |

Kroeker, K. J., Micheli, F., and Gambi, M. C. (2013b). Ocean acidification causes ecosystem shifts via altered competitive interactions. Nature Climate Change 3, 156–159.
Ocean acidification causes ecosystem shifts via altered competitive interactions.Crossref | GoogleScholarGoogle Scholar |

Law, C. S., Bell, J. J., Bostock, H. C., Cornwall, C. E., Cummings, V. J., Currie, K., Davy, S. K., Gammon, M., Hepburn, C. D., Hurd, C. L., Lamare, M., Mikaloff-Fletcher, S. E., Nelson, W. A., Parsons, D. M., Ragg, N. L. C., Sewell, M. A., Smith, A. M., and Tracey, D. M. (2018). Ocean acidification in New Zealand waters: trends and impacts. New Zealand Journal of Marine and Freshwater Research 52, 155–195.
Ocean acidification in New Zealand waters: trends and impacts.Crossref | GoogleScholarGoogle Scholar |

Lovenduski, N. S., Gruber, N., and Doney, S. C. (2008). Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink. Global Biogeochemical Cycles 22, GB3016.
Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink.Crossref | GoogleScholarGoogle Scholar |

Lovenduski, N. S., Long, M. C., and Lindsay, K. (2015). Natural variability in the surface ocean carbonate ion concentration. Biogeosciences 12, 6321–6335.
Natural variability in the surface ocean carbonate ion concentration.Crossref | GoogleScholarGoogle Scholar |

Lu, Y., Yuan, J., Lu, X., Su, C., Zhang, Y., Wang, C., Cao, X., Li, Q., Su, J., Ittekkot, V., Garbutt, R. A., Bush, S., Fletcher, S., Wagey, T., Kachur, A., and Sweijd, N. (2018). Major threats of pollution and climate change to global coastal ecosystems and enhanced management for sustainability. Environmental Pollution 239, 670–680.
Major threats of pollution and climate change to global coastal ecosystems and enhanced management for sustainability.Crossref | GoogleScholarGoogle Scholar | 29709838PubMed |

Lueker, T. J., Dickson, A. G., and Keeling, C. D. (2000). Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Marine Chemistry 70, 105–119.
Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium.Crossref | GoogleScholarGoogle Scholar |

MacDiarmid, A. B., Law, C. S., Pinkerton, M., and Zeldis, J. (2013). New Zealand marine ecosystem services. In ‘Ecosystem Services in New Zealand – Conditions and Trends’. (Ed. J. R. Dymond.) pp. 238–253. (Manaaki Whenua Press: Lincoln, New Zealand.)

Mackinder, L., Wheeler, G., Schroeder, D., Riebesell, U., and Brownlee, C. (2010). Molecular mechanisms underlying calcification in coccolithophores. Geomicrobiology Journal 27, 585–595.
Molecular mechanisms underlying calcification in coccolithophores.Crossref | GoogleScholarGoogle Scholar |

Mackintosh, L. (2001). ‘Overview of New Zealand’s Climate. Vol. 2019.’ (NIWA: Wellington, New Zealand.)

McLeod, I. M., Parsons, D. M., Morrison, M. A., Le Port, A., and Taylor, R. B. (2012). Factors affecting the recovery of soft-sediment mussel reefs in the Firth of Thames, New Zealand. Marine and Freshwater Research 63, 78–83.
Factors affecting the recovery of soft-sediment mussel reefs in the Firth of Thames, New Zealand.Crossref | GoogleScholarGoogle Scholar |

Meredith, M. P., Schofield, O., Newman, L., Urban, E., and Sparrow, M. (2013). The vision for a Southern Ocean observing system. Current Opinion in Environmental Sustainability 5, 306–313.
The vision for a Southern Ocean observing system.Crossref | GoogleScholarGoogle Scholar |

Meyer, J., and Riebesell, U. (2015). Reviews and syntheses: responses of coccolithophores to ocean acidification: a meta-analysis. Biogeosciences 12, 1671–1682.
Reviews and syntheses: responses of coccolithophores to ocean acidification: a meta-analysis.Crossref | GoogleScholarGoogle Scholar |

Moriarty, J., Harris, C., and Hadfield, M. (2014). A hydrodynamic and sediment transport model for the Waipaoa Shelf, New Zealand: sensitivity of fluxes to spatially varying erodibility and model nesting. Journal of Marine Science and Engineering 2, 336–369.
A hydrodynamic and sediment transport model for the Waipaoa Shelf, New Zealand: sensitivity of fluxes to spatially varying erodibility and model nesting.Crossref | GoogleScholarGoogle Scholar |

Mostofa, K. M. G., Yoshioka, T., Kornohira, E., and Tanoue, E. (2007). Photodegradation of fluorescent dissolved organic matter in river waters. Geochemical Journal 41, 323–331.
Photodegradation of fluorescent dissolved organic matter in river waters.Crossref | GoogleScholarGoogle Scholar |

Muller-Karger, F. E. (2005). The importance of continental margins in the global carbon cycle. Geophysical Research Letters 32, L01602.
The importance of continental margins in the global carbon cycle.Crossref | GoogleScholarGoogle Scholar |

Murphy, R. J., Pinkerton, M. H., Richardson, K. M., Bradford‐Grieve, J. M., and Boyd, P. W. (2001). Phytoplankton distributions around New Zealand derived from SeaWiFS remotely sensed ocean colour data. New Zealand Journal of Marine and Freshwater Research 35, 343–362.
Phytoplankton distributions around New Zealand derived from SeaWiFS remotely sensed ocean colour data.Crossref | GoogleScholarGoogle Scholar |

Nagelkerken, I., Goldenberg, S. U., Ferreira, C. M., Russell, B. D., and Connell, S. D. (2017). Species interactions drive fish biodiversity loss in a high-CO2 world. Current Biology 27, 2177–2184.e4.
Species interactions drive fish biodiversity loss in a high-CO2 world.Crossref | GoogleScholarGoogle Scholar | 28690109PubMed |

Newton, J. A., Feely, R. A., Jewett, E. B., Williamson, P., and Mathis, J. (2015). Global Ocean Acidification Observing Network: requirements and governance plan, 2nd edn. (GOA-ON.) Available at http://www.goa-on.org/documents/general/GOA-ON_2nd_edition_final.pdf [Verified xx XXXX xxxx].

Northcott, D., Sevadjian, J., Sancho-Gallegos, D. A., Wahl, C., Friederich, J., and Chavez, F. P. (2019). Impacts of urban carbon dioxide emissions on sea–air flux and ocean acidification in nearshore waters. PLoS One 14, e0214403.
Impacts of urban carbon dioxide emissions on sea–air flux and ocean acidification in nearshore waters.Crossref | GoogleScholarGoogle Scholar | 30917190PubMed |

O’Callaghan, J., Stevens, C., Roughan, M., Cornelisen, C., Sutton, P., Garrett, S., Giorli, G., Smith, R. O., Currie, K. I., Suanda, S. H., Williams, M., Bowen, M., Fernandez, D., Vennell, R., Knight, B. R., Barter, P., McComb, P., Oliver, M., Livingston, M., Tellier, P., Meissner, A., Brewer, M., Gall, M., Nodder, S. D., Decima, M., Souza, J., Forcén-Vazquez, A., Gardiner, S., Paul-Burke, K., Chiswell, S., Roberts, J., Hayden, B., Biggs, B., and Macdonald, H. (2019). Developing an integrated ocean observing system for New Zealand. Frontiers in Marine Science 6, 143.
Developing an integrated ocean observing system for New Zealand.Crossref | GoogleScholarGoogle Scholar |

Pal, I., and Al-Tabbaa, A. (2011). Assessing seasonal precipitation trends in India using parametric and non-parametric statistical techniques. Theoretical and Applied Climatology 103, 1–11.
Assessing seasonal precipitation trends in India using parametric and non-parametric statistical techniques.Crossref | GoogleScholarGoogle Scholar |

Parsons, D. M., Sim-Smith, C. J., Cryer, M., Francis, M. P., Hartill, B., Jones, E. G., Le Port, A., Lowe, M., McKenzie, J., Morrison, M., Paul, L. J., Radford, C., Ross, P. M., Spong, K. T., Trnski, T., Usmar, N., Walsh, C., and Zeldis, J. (2014). Snapper (Chrysophrys auratus): a review of life history and key vulnerabilities in New Zealand. New Zealand Journal of Marine and Freshwater Research 48, 256–283.
Snapper (Chrysophrys auratus): a review of life history and key vulnerabilities in New Zealand.Crossref | GoogleScholarGoogle Scholar |

Pikitch, E. K., Santora, C., Babcock, E. A., Bakun, A., Bonfil, R., Conover, D. O., Dayton, P., Doukakis, P., Fluharty, D., Heneman, B., Houde, E. D., Link, J., Livingston, P. A., Mangel, M., McAllister, M. K., Pope, J., and Sainsbury, K. J. (2004). Ecosystem-based fishery management. Science 305, 346–347.
Ecosystem-based fishery management.Crossref | GoogleScholarGoogle Scholar | 15256658PubMed |

Plew, D. R., Zeldis, J. R., Shankar, U., and Elliott, A. H. (2018). Using simple dilution models to predict New Zealand estuarine water quality. Estuaries and Coasts 41, 1643–1659.
Using simple dilution models to predict New Zealand estuarine water quality.Crossref | GoogleScholarGoogle Scholar |

Ramesh, K., Hu, M. Y., Thomsen, J., Bleich, M., and Melzner, F. (2017). Mussel larvae modify calcifying fluid carbonate chemistry to promote calcification. Nature Communications 8, 1709.
Mussel larvae modify calcifying fluid carbonate chemistry to promote calcification.Crossref | GoogleScholarGoogle Scholar | 29167466PubMed |

Ramesh, K., Yarra, T., Clark, M. S., John, U., and Melzner, F. (2019). Expression of calcification-related ion transporters during blue mussel larval development. Ecology and Evolution 9, 7157–7172.
Expression of calcification-related ion transporters during blue mussel larval development.Crossref | GoogleScholarGoogle Scholar | 31380040PubMed |

Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N., Janssens, I. A., Laruelle, G. G., Lauerwald, R., Luyssaert, S., Andersson, A. J., Arndt, S., Arnosti, C., Borges, A. V., Dale, A. W., Gallego-Sala, A., Goddéris, Y., Goossens, N., Hartmann, J., Heinze, C., Ilyina, T., Joos, F., LaRowe, D. E., Leifeld, J., Meysman, F. J. R., Munhoven, G., Raymond, P. A., Spahni, R., Suntharalingam, P., and Thullner, M. (2013). Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature Geoscience 6, 597–607.
Anthropogenic perturbation of the carbon fluxes from land to ocean.Crossref | GoogleScholarGoogle Scholar |

Roemmich, D., Johnson, G. C., Riser, S., Davis, R., Gilson, J., Owens, B., Garzoli, S. L., Schmid, C., and Ignaszewski, M. (2009). The Argo Program: observing the global ocean with profiling floats. Oceanography (Washington, D.C.) 22, 34–43.
The Argo Program: observing the global ocean with profiling floats.Crossref | GoogleScholarGoogle Scholar |

Sayemuzzaman, M., Jha, M. K., Mekonnen, A., and Schimmel, K. A. (2014). Subseasonal climate variability for North Carolina, United States. Atmospheric Research 145–146, 69–79.
Subseasonal climate variability for North Carolina, United States.Crossref | GoogleScholarGoogle Scholar |

Schlesinger, W. H. (2009). On the fate of anthropogenic nitrogen. Proceedings of the National Academy of Sciences of the United States of America 106, 203–208.
On the fate of anthropogenic nitrogen.Crossref | GoogleScholarGoogle Scholar | 19118195PubMed |

Seafood New Zealand (2018). Seafood exports by product type, species and country. Available at https://www.seafood.org.nz/publications/export-information/export-statistics/?tx_ttnews%5Btt_news%5D=1385&cHash=2ac56c237ae39269af24d00a0fae3136 [Verified 7 October 2019].

Silvertown, J. (2009). A new dawn for citizen science. Trends in Ecology & Evolution 24, 467–471.
A new dawn for citizen science.Crossref | GoogleScholarGoogle Scholar |

Slocombe, D. S. (1993). Implementing Ecosystem-based Management. Bioscience 43, 612–622.
Implementing Ecosystem-based Management.Crossref | GoogleScholarGoogle Scholar |

Soetaert, K., Hofmann, A. F., Middelburg, J. J., Meysman, F. J. R., and Greenwood, J. (2007). The effect of biogeochemical processes on pH. Marine Chemistry 105, 30–51.
The effect of biogeochemical processes on pH.Crossref | GoogleScholarGoogle Scholar |

Soutelino, R. G., and Beamsley, B. (2015). The influence of the Southland Current on circulation patterns within Pegasus Bay. In ‘Australasian Coasts & Ports Conference 2015: 22nd Australasian Coastal and Ocean Engineering Conference and the 15th Australasian Port and Harbour Conference’, 15–18 September 2015, Auckland, New Zealand. pp. 828–834. (Engineers Australia and Institution of Professional Engineers New Zealand: Barton, ACT, Australia.) Available at https://search.informit.com.au/documentSummary;dn=725050307549148;res=IELENG [Verified 25 November 2019]

Spilling, K., Schulz, K. G., Paul, A. J., Boxhammer, T., Achterberg, E. P., Hornick, T., Lischka, S., Stuhr, A., Bermúdez, R., Czerny, J., Crawfurd, K., Brussaard, C. P. D., Grossart, H.-P., and Riebesell, U. (2016). Effects of ocean acidification on pelagic carbon fluxes in a mesocosm experiment. Biogeosciences 13, 6081–6093.
Effects of ocean acidification on pelagic carbon fluxes in a mesocosm experiment.Crossref | GoogleScholarGoogle Scholar |

Stats Tatauranga Aotearoa (2018). National accounts (income and expenditure): year ended March 2018. Available at https://www.stats.govt.nz/information-releases/national-accounts-income-and-expenditure-year-ended-march-2018 [Verified 9 June 2019].

Stevens, C. L., O’Callaghan, J. M., Chiswell, S. M., and Hadfield, M. G. (2019). Physical oceanography of New Zealand/Aotearoa shelf seas – a review. New Zealand Journal of Marine and Freshwater Research , .
Physical oceanography of New Zealand/Aotearoa shelf seas – a review.Crossref | GoogleScholarGoogle Scholar |

Storey, R. G., and Wright-Stow, A. (2017). Community-based monitoring of New Zealand stream macroinvertebrates: agreement between volunteer and professional assessments and performance of volunteer indices. New Zealand Journal of Marine and Freshwater Research 51, 60–77.
Community-based monitoring of New Zealand stream macroinvertebrates: agreement between volunteer and professional assessments and performance of volunteer indices.Crossref | GoogleScholarGoogle Scholar |

Sutton, A. J., Sabine, C. L., Dietrich, C., Maenner Jones, S., Musielewicz, S., Bott, R., Osborne, J. (2012). High-resolution ocean and atmosphere pCO2 time-series measurements from mooring WHOTS_158W_23N (NCEI Accession 0100080). NOAA National Centers for Environmental Information. Dataset10.3334/CDIAC/OTG.TSM_WHOTS

Sutton, A. J., Sabine, C. L., Hales, B., Musielewicz, S., Maenner Jones, S., Dietrich, C., Bott, R., Osborne, J. (2016). High-resolution ocean and atmosphere pCO2 time-series measurements from mooring NH10_124W_44N (NCEI Accession 0157247). NOAA National Centers for Environmental Information. Dataset10.3334/CDIAC/OTG.TSM_NH10_124W_44N

Sutton, A. J., Feely, R. A., Maenner-Jones, S., Musielwicz, S., Osborne, J., Dietrich, C., Monacci, N., Cross, J., Bott, R., Kozyr, A., Andersson, A. J., Bates, N. R., Cai, W.-J., Cronin, M. F., De Carlo, E. H., Hales, B., Howden, S. D., Lee, C. M., Manzello, D. P., McPhaden, M. J., Meléndez, M., Mickett, J. B., Newton, J. A., Noakes, S. E., Noh, J. H., Olafsdottir, S. R., Salisbury, J. E., Send, U., Trull, T. W., Vandemark, D. C., and Weller, R. A. (2019). Autonomous seawater pCO2 and pH time series from 40 surface buoys and the emergence of anthropogenic trends. Earth System Science Data 11, 421–439.
Autonomous seawater pCO2 and pH time series from 40 surface buoys and the emergence of anthropogenic trends.Crossref | GoogleScholarGoogle Scholar |

Suzuki, T., Ishii, M., Aoyama, M., Christian, J. R., Enyo, K., Kawano, T., Key, R. M., Kosugi, N., Kozyr, A., Miller, L. A., Murata, A., Nakano, T., Ono, T., Saino, T., Sasaki, K., Sasano, D., Takatani, Y., Wakita, M., and Sabine, C. L. (2013). Pacifica data synthesis project. ORNL/CDIAC-159, NDP-092, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN, USA10.3334/CDIAC/OTG.PACIFICA_NDP092

Tilbrook, B., Jewett, E. B., DeGrandpre, M. D., Hernandez-Ayon, J. M., Feely, R. A., Gledhill, D. K., Hansson, L., Isensee, K., Kurz, M. L., Newton, J. A., Siedlecki, S. A., Chai, F., Dupont, S., Graco, M., Calvo, E., Greeley, D., Kapsenberg, L., Lebrec, M., Pelejero, C., Schoo, K. L., and Telszewski, M. (2019). An enhanced ocean acidification observing network: from people to technology to data synthesis and information exchange. Frontiers in Marine Science 6, 337.
An enhanced ocean acidification observing network: from people to technology to data synthesis and information exchange.Crossref | GoogleScholarGoogle Scholar |

Toyofuku, T., Matsuo, M. Y., de Nooijer, L. J., Nagai, Y., Kawada, S., Fujita, K., Reichart, G. J., Nomaki, H., Tsuchiya, M., Sakaguchi, H., and Kitazato, H. (2017). Proton pumping accompanies calcification in foraminifera. Nature Communications 8, 14145.
Proton pumping accompanies calcification in foraminifera.Crossref | GoogleScholarGoogle Scholar | 28128216PubMed |

Tréguer, P., Bowler, C., Moriceau, B., Dutkiewicz, S., Gehlen, M., Aumont, O., Bittner, L., Dugdale, R., Finkel, Z., Iudicone, D., Jahn, O., Guidi, L., Lasbleiz, M., Leblanc, K., Levy, M., and Pondaven, P. (2018). Influence of diatom diversity on the ocean biological carbon pump. Nature Geoscience 11, 27–37.
Influence of diatom diversity on the ocean biological carbon pump.Crossref | GoogleScholarGoogle Scholar |

Turk, D., Wang, H., Hu, X., Gledhill, D. K., Wang, Z. A., Jiang, L., and Cai, W.-J. (2019). Time of emergence of surface ocean carbon dioxide trends in the North American coastal margins in support of ocean acidification observing system design. Frontiers in Marine Science 6, 91.
Time of emergence of surface ocean carbon dioxide trends in the North American coastal margins in support of ocean acidification observing system design.Crossref | GoogleScholarGoogle Scholar |

Waldbusser, G. G., and Salisbury, J. E. (2014). Ocean acidification in the coastal zone from an organism’s perspective: multiple system parameters, frequency domains, and habitats. Annual Review of Marine Science 6, 221–247.
Ocean acidification in the coastal zone from an organism’s perspective: multiple system parameters, frequency domains, and habitats.Crossref | GoogleScholarGoogle Scholar | 23987912PubMed |

Waldbusser, G. G., Brunner, E. L., Haley, B. A., Hales, B., Langdon, C. J., and Prahl, F. G. (2013). A developmental and energetic basis linking larval oyster shell formation to acidification sensitivity. Geophysical Research Letters 40, 2171–2176.
A developmental and energetic basis linking larval oyster shell formation to acidification sensitivity.Crossref | GoogleScholarGoogle Scholar |

Waldbusser, G. G., Hales, B., Langdon, C. J., Haley, B. A., Schrader, P., Brunner, E. L., Gray, M. W., Miller, C. A., and Gimenez, I. (2015). Saturation-state sensitivity of marine bivalve larvae to ocean acidification. Nature Climate Change 5, 273–280.
Saturation-state sensitivity of marine bivalve larvae to ocean acidification.Crossref | GoogleScholarGoogle Scholar |

Waldbusser, G. G., Hales, B., and Haley, B. A. (2016). Calcium carbonate saturation state: on myths and this or that stories. ICES Journal of Marine Science 73, 563–568.
Calcium carbonate saturation state: on myths and this or that stories.Crossref | GoogleScholarGoogle Scholar |

Wanninkhof, R., Park, G. H., Takahashi, T., Sweeney, C., Feely, R., Nojiri, Y., Gruber, N., Doney, S. C., McKinley, G. A., Lenton, A., Le Quéré, C., Heinze, C., Schwinger, J., Graven, H., and Khatiwala, S. (2013). Global ocean carbon uptake: magnitude, variability and trends. Biogeosciences 10, 1983–2000.
Global ocean carbon uptake: magnitude, variability and trends.Crossref | GoogleScholarGoogle Scholar |

Zeebe, R. E. (2012). History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification. Annual Review of Earth and Planetary Sciences 40, 141–165.
History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification.Crossref | GoogleScholarGoogle Scholar |

Zeebe, R. E., and Wolf-Gladrow, D. (2001). ‘CO2 in Seawater: Equilibrium, Kinetics, Isotopes’, 1st edn. (Elsevier Science: Amsterdam, Netherlands.)

Zeebe, R. E., Zachos, J. C., and Tyrrell, T. (2008). Carbon emissions and acidification. Science 321, 51–52.
Carbon emissions and acidification.Crossref | GoogleScholarGoogle Scholar | 18599765PubMed |

Zeldis, J. R., and Swaney, D. P. (2018). Balance of catchment and offshore nutrient loading and biogeochemical response in four New Zealand coastal systems: Implications for Resource Management. Estuaries and Coasts 41, 2240–2259.
Balance of catchment and offshore nutrient loading and biogeochemical response in four New Zealand coastal systems: Implications for Resource Management.Crossref | GoogleScholarGoogle Scholar |

Zeldis, J. R., Oldman, J., Ballara, S. L., and Richards, L. A. (2005). Physical fluxes, pelagic ecosystem structure, and larval fish survival in Hauraki Gulf, New Zealand. Canadian Journal of Fisheries and Aquatic Sciences 62, 593–610.
Physical fluxes, pelagic ecosystem structure, and larval fish survival in Hauraki Gulf, New Zealand.Crossref | GoogleScholarGoogle Scholar |

Zeldis, J. R., Swales, A., Currie, K., Safi, K., Nodder, S., Depree, C., Elliott, F., Pritchard, M., Gall, M., O'Callaghan, J., Pratt, D., Chiswell, S., Pinkerton, M., Lohrer, D., and Bentley, S. (2015). Firth of Thames water quality and ecosystem health – data report. NIWA Client Report CHC2014-123. (National Institute of Water & Atmospheric Research Ltd: Christchurch, New Zealand.) Available at http://www.waikatoregion.govt.nz/services/publications-2019/technical-reports/tr/tr201523/#data [Verified 28 November 2019].