Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Phenology and litter production in the mangrove genus Xylocarpus along rainfall and temperature gradients in tropical Australia

Alistar I. Robertson https://orcid.org/0000-0003-2445-3293 A B C , Paul Dixon A and Irena Zagorskis A
+ Author Affiliations
- Author Affiliations

A Australian Institute of Marine Science, PMB 3, Townsville MC, Qld 4810, Australia.

B The UWA Oceans Institute and School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

C Corresponding author. Email: alistar.robertson@uwa.edu.au

Marine and Freshwater Research 72(4) 551-562 https://doi.org/10.1071/MF20158
Submitted: 21 May 2020  Accepted: 31 August 2020   Published: 22 October 2020

Abstract

We investigated how variation in climate influences the timing and intensity of phenological events in two species of the mangrove genus Xylocarpus. Leaf fall in Xylocarpus granatum was continuous in high rainfall sites but was seasonal at sites with long dry seasons. Xylocarpus moluccensis is deciduous, and leaf shedding occurred over 1–2 months at different times in dry season months. Budding and flowering were tightly coupled in X. granatum and occurred in the wet season. At the highest rainfall site, flower fall in X. moluccensis occurred in the mid-wet season, but occurred 9 months later at other sites with protracted dry seasons. For X. moluccensis, the quantities of leaves, buds, flowers and total litter fall were negatively related to annual rainfall, whereas bud fall was negatively related to air temperature. Variations in the quantity of litter produced by X. granatum were not explained by the environmental variables considered. Mean litter production was significantly greater for X. moluccensis than X. granatum (5.16 v. 3.37 Mg h–1 year–1 respectively). Mixed forest litter production was greater in forests containing X. moluccensis than X. granatum (7.86 v. 5.95 Mg h–1 year–1 respectively). X. granatum has a more plastic response to environmental drivers of canopy production than X. moluccensis.


References

Aksornkoae, S. (1993). ‘Ecology and Management of Mangroves.’ (IUCN: Bangkok, Thailand.)

Almazol, A. E., and Cervancia, C. R. (2013). Floral biology and pollination of three mangrove species (Aegiceras floridum Roem. & Schults., Scyphiphora hydrophyllacea Gaertn. f., and Xylocarpus granatum Koen.) in Pagbilao Mangrove Forest, Quezon Province, Philippines. Journal of Nature Studies 12, 39–47.

Alongi, D. M. (2009). ‘The Energetics of Mangrove Forests.’ (Springer Science: Berlin, Germany.)

Alongi, D. M. (2014). Carbon cycling and storage in mangrove forests. Annual Review of Marine Science 6, 195–219.
Carbon cycling and storage in mangrove forests.Crossref | GoogleScholarGoogle Scholar | 24405426PubMed |

Ashton, E. C., and Macintosh, D. J. (2002). Preliminary assessment of plant diversity and community ecology of the Samatan mangrove forest, Sarawak, Malaysia. Forest Ecology and Management 166, 111–129.
Preliminary assessment of plant diversity and community ecology of the Samatan mangrove forest, Sarawak, Malaysia.Crossref | GoogleScholarGoogle Scholar |

Atwood, T. B., Connolly, R. M., Almahasheer, H., Carnell, P. E., Duarte, C. M., Ewers Lewis, C. J., Irigoien, X., Kelleway, J. J., Lavery, P. S., Macreadie, P. I., Serrano, O., Sanders, C. J., Santos, I., Steven, A. D. L., and Lovelock, C. E. (2017). Global patterns in mangrove soil carbon stocks and losses. Nature Climate Change 7, 523–528.
Global patterns in mangrove soil carbon stocks and losses.Crossref | GoogleScholarGoogle Scholar |

Ball, M. C. (1988). Ecophysiology of mangroves. Trees 2, 129–142.
Ecophysiology of mangroves.Crossref | GoogleScholarGoogle Scholar |

Ball, M. C. (1998). Mangrove species richness in relation to salinity and waterlogging: a case study along the Adelaide River floodplain, Northern Australia. Global Ecology and Biogeography Letters 7, 73–82.
Mangrove species richness in relation to salinity and waterlogging: a case study along the Adelaide River floodplain, Northern Australia.Crossref | GoogleScholarGoogle Scholar |

Ball, M. C., and Farquhar, G. D. (1984). Photosynthetic and stomatal responses of two mangrove species, Aegiceras corniculatum and Avicennia marina, to long term salinity and humidity conditions. Plant Physiology 74, 1–6.
Photosynthetic and stomatal responses of two mangrove species, Aegiceras corniculatum and Avicennia marina, to long term salinity and humidity conditions.Crossref | GoogleScholarGoogle Scholar | 16663359PubMed |

Ball, M. C., and Sobrado, M. A. (1999). Ecophysiology of mangroves: challenges in linking physiological process with patterns in forest structure. In ‘Advances in Plant Physiological Ecology’. (Eds M. C. Press, J. D. Scholes, and M. G. Baker.) pp. 331–346. (Blackwell Science: Oxford, UK.)

Bunt, J. S., Williams, W. T., and Clay, H. J. (1982). River water salinity and the distribution of mangrove species along several rivers in north Queensland. Australian Journal of Botany 30, 401–412.
River water salinity and the distribution of mangrove species along several rivers in north Queensland.Crossref | GoogleScholarGoogle Scholar |

Bureau of Meteorology (2020). Flood warning system for the Barron River. Available at http://www.bom.gov.au/qld/flood/brochures/barron/barron.shtml [Verified 29 April 2020].

Clough, B. F. (1992). Primary productivity and the growth of mangrove forests. In ‘Tropical Mangrove Ecosystems’. (Eds A. I. Robertson and D. M. Alongi.) pp. 225–250. (American Geophysical Union: Washington, DC, USA.)

Clough, B. F. (2013). ‘Continuing the Journey Amongst Mangroves.’ (International Society for Mangrove Ecosystems, Okinawa and International Tropical Timber Organization: Yokohama, Japan.)

Coupland, G. T., Paling, E. I., and McGuinness, K. A. (2005). Vegetative and reproductive phenologies of four mangrove species from northern Australia. Australian Journal of Botany 53, 109–117.
Vegetative and reproductive phenologies of four mangrove species from northern Australia.Crossref | GoogleScholarGoogle Scholar |

Cragg, S. M., Friess, D. A., Gillis, L. G., Trevathan-Tackett, S. M., Terrett, O. M., Watts, J. E. M., Distel, D. L., and Dupree, P. (2020). Vascular plants are globally significant contributors to marine carbon fluxes and sinks. Annual Review of Marine Science 12, 469–497.
Vascular plants are globally significant contributors to marine carbon fluxes and sinks.Crossref | GoogleScholarGoogle Scholar | 31505131PubMed |

Devoe, N. N., and Cole, T. G. (1998). Growth and yield in mangrove forests of the Federated States of Micronesia. Forest Ecology and Management 103, 33–48.
Growth and yield in mangrove forests of the Federated States of Micronesia.Crossref | GoogleScholarGoogle Scholar |

Duke, N. C. (1988). Phenologies and litter fall of two mangrove trees, Sonneratia alba Sm. and S. caseolaris (L.) Engl., and their putative hybrid, S. × gulngai N. C. Duke. Australian Journal of Botany 36, 473–482.
Phenologies and litter fall of two mangrove trees, Sonneratia alba Sm. and S. caseolaris (L.) Engl., and their putative hybrid, S. × gulngai N. C. Duke.Crossref | GoogleScholarGoogle Scholar |

Duke, N. C. (1990). Phenological trends with latitude in the mangrove tree Avicennia marina. Journal of Ecology 78, 113–133.
Phenological trends with latitude in the mangrove tree Avicennia marina.Crossref | GoogleScholarGoogle Scholar |

Duke, N. C. (1992). Mangrove floristics and biogeography. In ‘Tropical Mangrove Ecosystems’. (Eds A. I. Robertson and D. M. Alongi.) pp. 63–100. (American Geophysical Union: Washington, DC, USA.)

Duke, N. C. (2001). Mangrove phenologies and the factors influencing them in the Australasian region. In ‘Mangrove Ecosystems: Function and Management’. (Ed. L. D. de Lacerda.) pp. 217–233. (Springer-Verlag: Berlin, Germany.)

Duke, N. C. (2006). ‘Australia’s Mangroves. The Authoritative Guide to Australia’s Mangrove Plants.’ (University of Queensland and Norman C. Duke: Brisbane, Qld, Australia.)

Duke, N. C. (2017). Mangrove floristics and biogeography revisited: further deductions from biodiversity hot spots, ancestral discontinuities and common evolutionary processes. In ‘Mangrove Ecosystems: A Global Biogeographic Perspective. Structure, Function and Services’. (Eds V. H. Rivera-Monroy, S. Y. Lee, E. Kristensen, and R. R. Twilley.) pp. 17–54. (Springer Nature: Cham, Switzerland.)

Duke, N. C., Ball, M. C., and Ellison, J. C. (1998). Factors influencing biodiversity and distributional gradients in mangroves. Global Ecology and Biogeography Letters 7, 27–47.
Factors influencing biodiversity and distributional gradients in mangroves.Crossref | GoogleScholarGoogle Scholar |

Ewel, J. J., and Mazzarino, M. J. (2008). Competition from below for light and nutrients shifts productivity among tropical species. Proceedings of the National Academy of Sciences of the United States of America 105, 18836–18841.
Competition from below for light and nutrients shifts productivity among tropical species.Crossref | GoogleScholarGoogle Scholar | 19022907PubMed |

Ewel, K. C., Twilley, R. R., and Ong, J. E. (1998). Different kinds of mangrove forests provide different goods and services. Global Ecology and Biogeography Letters 7, 83–94.
Different kinds of mangrove forests provide different goods and services.Crossref | GoogleScholarGoogle Scholar |

Feller, I. C., Lovelock, C. E., Berger, U., McKee, K. L., and Ball, M. C. (2010). Biocomplexity in mangrove ecosystems. Annual Review of Marine Science 2, 395–417.
Biocomplexity in mangrove ecosystems.Crossref | GoogleScholarGoogle Scholar | 21141670PubMed |

Fernandes, M. E. B. (1999). Phenological patterns of Rhizophora L., Avicennia L. and Laguncularia Gaertn. f. in Amazonian mangrove swamps. Hydrobiologia 413, 53–62.
Phenological patterns of Rhizophora L., Avicennia L. and Laguncularia Gaertn. f. in Amazonian mangrove swamps.Crossref | GoogleScholarGoogle Scholar |

Friess, D. A., Rogers, K., Lovelock, C. E., Krauss, K. W., Hamilton, S. E., Lee, S. Y., Lucas, R., Primavera, J., Rajkaran, A., and Shi, S. (2019). The state of the world’s mangrove forests: past, present, and future. Annual Review of Environment and Resources 44, 89–115.
The state of the world’s mangrove forests: past, present, and future.Crossref | GoogleScholarGoogle Scholar |

Friess, D. A., Yando, E. S., Abuchahla, G. M. O., Adams, J. B., Cannicci, S., Canty, S. W. J., Cavanaugh, K. C., Connolly, R. M., Cormier, N., Dahdouh-Guebas, F., Diele, K., Feller, I. C., Fratini, S., Jennerjahn, T. C., Lee, S. Y., Ogurcak, D. E., Ouyang, X., Rogers, K., Rowntree, J. K., Sharma, S., Sloey, T. M., and Wee, A. K. S. (2020). Mangroves give cause for conservation optimism, for now. Current Biology 30, R153–R154.
Mangroves give cause for conservation optimism, for now.Crossref | GoogleScholarGoogle Scholar | 32097637PubMed |

Hoque, M. M., Kamal, A. H. M., Idris, M. H., Ahmed, O. H., Hoque, A. T. M. R., and Billah, M. M. (2015). Litterfall production in a tropical mangrove of Sarawak, Malaysia. Zoology and Ecology 25, 157–165.
Litterfall production in a tropical mangrove of Sarawak, Malaysia.Crossref | GoogleScholarGoogle Scholar |

Hutchison, J., Manica, A., Swetnam, R., Balmford, A., and Spalding, M. (2014). Predicting global patterns in mangrove forest biomass. Conservation Letters 7, 233–240.
Predicting global patterns in mangrove forest biomass.Crossref | GoogleScholarGoogle Scholar |

Huxham, M., Kumara, M. P., Jayatissa, L. P., Krauss, K. W., Kairo, J., Langat, J., Mencuccini, M., Skov, M. W., and Kirui, B. (2010). Intra- and interspecific facilitation in mangroves may increase resilience to climate change threats. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 365, 2127–2135.
Intra- and interspecific facilitation in mangroves may increase resilience to climate change threats.Crossref | GoogleScholarGoogle Scholar | 20513720PubMed |

Iftekhar, M. S., and Saenger, P. (2008). Vegetation dynamics in the Bangladesh Sundarbans mangroves: a review of forest inventories. Wetlands Ecology and Management 16, 291–312.
Vegetation dynamics in the Bangladesh Sundarbans mangroves: a review of forest inventories.Crossref | GoogleScholarGoogle Scholar |

Jucker, T., Bouriaud, O., and Coomes, D. A. (2015). Crown plasticity enables trees to optimize canopy packing in mixed-species forests. Functional Ecology 29, 1078–1086.
Crown plasticity enables trees to optimize canopy packing in mixed-species forests.Crossref | GoogleScholarGoogle Scholar |

Kamruzzaman, M., Basak, K., Paul, S. K., Ahmed, S., and Osawa, A. (2019). Litterfall production, decomposition and nutrient accumulation in Sundarbans mangrove forests, Bangladesh. Forest Science and Technology 15, 23–32.
Litterfall production, decomposition and nutrient accumulation in Sundarbans mangrove forests, Bangladesh.Crossref | GoogleScholarGoogle Scholar |

Lee, S. Y., Hamilton, S., Barbier, E. B., Primavera, J., and Lewis, R. R. (2019). Better restoration policies are needed to conserve mangrove ecosystems. Nature Ecology & Evolution 3, 870–872.
Better restoration policies are needed to conserve mangrove ecosystems.Crossref | GoogleScholarGoogle Scholar |

Macreadie, P. I., Anton, A., Raven, J. A., Beaumont, N., Connolly, R. M., Friess, D. A., Kelleway, J. J., Kennedy, H., Kuwae, T., Lavery, P. S., Lovelock, C. E., Smale, D. A., Apostolaki, E. T., Atwood, T. B., Baldock, J., Bianchi, T. S., Chmura, G. L., Eyre, B. D., Fourqurean, J. W., Hall-Spencer, J. M., Huxham, M., Hendriks, I. E., Krause-Jensen, D., Laffoley, D., Luisetti, T., Marbà, N., Masque, P., McGlathery, K. J., Megonigal, J. P., Murdiyarso, D., Russell, B. D., Santos, R., Serrano, O., Silliman, B. R., Watanabe, K., and Duarte, C. M. (2019). The future of blue carbon science. Nature Communications 10, 1–13.

Mehlig, U. (2006). Phenology of the red mangrove, Rhizophora mangle L., in the Caeté Estuary, Pará, equatorial Brazil. Aquatic Botany 84, 158–164.
Phenology of the red mangrove, Rhizophora mangle L., in the Caeté Estuary, Pará, equatorial Brazil.Crossref | GoogleScholarGoogle Scholar |

Nadia, T de L., Morellato, L. P. C., and Machardo, I. C. (2012). Reproductive phenology of a northeast Brazilian mangrove community: environmental and biotic constraints. Flora 207, 682–692.
Reproductive phenology of a northeast Brazilian mangrove community: environmental and biotic constraints.Crossref | GoogleScholarGoogle Scholar |

Pickett, S. T. A. (1989). Space for time substitutions as an alternative to long term studies. In ‘Long Term Studies in Ecology. Approaches and Alternatives’. (Ed. G. E. Likens.) pp. 110–135. (Springer Verlag: New York, NY, USA.)

Ragavan, P., Saxena, A., Jayaraj, R. S. C., Ravichandran, K., Mohan, P. M., and Saxena, M. (2015). Taxonomy and distribution of little known species of the genus Xylocarpus (Meliaceae) in the Andaman and Nicobar Islands, India. Botanica Marina 58, 415–422.
Taxonomy and distribution of little known species of the genus Xylocarpus (Meliaceae) in the Andaman and Nicobar Islands, India.Crossref | GoogleScholarGoogle Scholar |

Rahman, M. M., and Islam, S. A. (2015). Phenophases of five mangrove species of the Sundarbans of Bangladesh. International Journal of Business, Social Science Research 4, 77–82.

Raju, J. S. S. N. (2003). Xylocarpus (Meliaceae): a less-known mangrove taxon of the Godavari estuary, India. Current Science 84, 879–881.

Raju, A. J. S. (2020). Pollination ecology of oviparous semi-evergreen mangrove tree species Xylocarpus granatum Koen and X. mekongensis Pierre (Meliaceae) at Coringa mangrove forest, Andhra Pradesh, India. Annali di Botanica 10, 67–76.

Robertson, A. I., Daniel, P. A., and Dixon, P. (1991). Mangrove forest structure and productivity in the Fly River estuary, Papua New Guinea. Marine Biology 111, 147–155.
Mangrove forest structure and productivity in the Fly River estuary, Papua New Guinea.Crossref | GoogleScholarGoogle Scholar |

Saenger, P. (1982). Morphological, anatomical and reproductive adaptations of Australian mangroves. In ‘Mangrove Ecosystems in Australia’. (Ed. B. F. Clough.) pp. 153–192. (Australian National University Press: Canberra, ACT, Australia.)

Saenger P. (2002). ‘Mangrove Ecology, Silviculture and Conservation’. (Kluwer Academic Publishers: Dordrecht, Netherlands.)

Saenger, P., and Moverley, J. (1985). Vegetative phenologies of mangroves along the Queensland coastline. Proceedings of the Ecological Society of Australia 13, 257–265.

Saenger, P., and Snedaker, S. C. (1993). Pantropical trends in mangrove above-ground biomass and annual litterfall. Oecologia 96, 293–299.
Pantropical trends in mangrove above-ground biomass and annual litterfall.Crossref | GoogleScholarGoogle Scholar | 28313641PubMed |

Sánchez-Núñez, D. A., and Mancera-Pineda, J. E. (2011). Flowering patterns in three neotropical mangrove species: evidence from a Caribbean island. Aquatic Botany 94, 177–182.
Flowering patterns in three neotropical mangrove species: evidence from a Caribbean island.Crossref | GoogleScholarGoogle Scholar |

Sanders, C. J., Maher, D. T., Tait, D. R., Williams, D., Holloway, C., Sippo, J. Z., and Santos, I. R. (2016). Are global mangrove carbon stocks driven by rainfall? Journal of Geophysical Research. Biogeosciences 121, 2600–2609.
Are global mangrove carbon stocks driven by rainfall?Crossref | GoogleScholarGoogle Scholar |

Smith, T. J. (1987). Effects of light and intertidal position on seedling survival and growth in tropical tidal forests. Journal of Experimental Marine Biology and Ecology 110, 133–146.
Effects of light and intertidal position on seedling survival and growth in tropical tidal forests.Crossref | GoogleScholarGoogle Scholar |

Smith, T. J. III. (1992). Forest structure. In ‘Tropical Mangrove Ecosystems’. (Eds A. I. Robertson and D. M. Alongi.) pp. 101–136. (American Geophysical Union: Washington, DC, USA.)

Sukardjo, S., Alongi, D. M., and Kusmana, C. (2013). Rapid litter production and accumulation in Bornean mangrove forests. Ecosphere 4, art79.
Rapid litter production and accumulation in Bornean mangrove forests.Crossref | GoogleScholarGoogle Scholar |

Tomlinson, P. B. (1986). ‘The Botany of Mangroves.’ (Cambridge University Press: Cambridge, UK.)

Trettin, C. C., Stringer, C. E., and Zarnoch, S. J. (2016). Composition, biomass and structure of mangroves within the Zambesi River Delta. Wetlands Ecology and Management 24, 173–186.
Composition, biomass and structure of mangroves within the Zambesi River Delta.Crossref | GoogleScholarGoogle Scholar |

Upadhyay, V. P., and Mishra, P. K. (2010). Phenology of mangroves tree species on Orissa coast, India. Tropical Ecology 51, 289–295.

Wild Singapore (2020). Mangrove cannon-ball tree or Nyireh bunga: Xylocarpus granatum. Family Meliaceae. In ‘Wild Fact Sheets’. Available at http://www.wildsingapore.com/wildfacts/plants/mangrove/xylocarpus/granatum.htm [Verified 26 April 2020].

Williams, W. T., Bunt, J. S., and Duke, N. C. (1981). Mangrove litter fall in north-eastern Australia. 2. Periodicity. Australian Journal of Botany 29, 555–563.
Mangrove litter fall in north-eastern Australia. 2. Periodicity.Crossref | GoogleScholarGoogle Scholar |