Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Durum wheat quality traits affected by mycorrhizal inoculation, water availability and atmospheric CO2 concentration

N. Goicoechea A E , M. M. Bettoni B , T. Fuertes-Mendizábal C , C. González-Murua C and I. Aranjuelo C D
+ Author Affiliations
- Author Affiliations

A Departamento de Biología Ambiental, Grupo de Fisiología del Estrés en Plantas (Unidad Asociada al CSIC, EEAD, Zaragoza e ICVV, Logroño), Facultades de Ciencias y Farmacia, Universidad de Navarra, Irunlarrea 1, 31008, Pamplona, Spain.

B Departamento de Fitotecnia e Fitossanitarismo, Setor de Ciências Agrárias, Universidade Federal do Paraná, Rua dos Funcionários, 1540. Juvevê, Curitiba, Brasil.

C Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa-Bizkaia, Spain.

D Instituto de Agrobiotecnología (IdAB), Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus de Arrosadía, 31192 Mutilva Baja, Spain.

E Corresponding author. Email: niegoi@unav.es

Crop and Pasture Science 67(2) 147-155 https://doi.org/10.1071/CP15212
Submitted: 1 July 2015  Accepted: 5 October 2015   Published: 19 February 2016

Abstract

Predicted reduced precipitation, enhanced evaporative demand and increasing CO2 in the atmosphere will strongly influence wheat production. The association of wheat with arbuscular mycorrhizal fungi (AMF) improves growth under stressful conditions. Our objective was to test the influence of mycorrhizal inoculation on yield, and accumulation of macro- and micro-nutrients and gliadins in grains of durum wheat (Triticum durum Desf.) plants grown under different CO2 concentrations and water regimes. The main factors of the experimental design were mycorrhizal inoculation (inoculated or non-inoculated plants); atmospheric CO2 concentration (ambient, ACO2, or elevated, ECO2); and water regime (optimal or restricted water regime). At ACO2, the simultaneous application of AMF and water deficit decreased the number of seeds per spike without affecting the biomass of grains, and grains accumulated higher contents of copper, iron, manganese, zinc and gliadins. The opposite effect was observed with ECO2 where, regardless of mycorrhizal and water treatment factors, a general depletion of contents of micro- and macro-nutrients and gliadins was detected. Whereas mycorrhizal inoculation together with drought applied to plants cultivated at ACO2 improved wheat grain quality parameters, under ECO2, mycorrhization did not ameliorate grain quality parameters detected in plants that produced the largest grain dry matter values.

Additional keywords: CO2 enrichment, drought, mineral nutrients, storage proteins, yield.


References

Aghili F, Jansa J, Khoshgoftarmanesh AH, Afyuni M, Schulin R, Frossard E, Gamper HA (2014) Wheat plants invest more in mycorrhizae and receive more benefits from them under adverse than favorable soil conditions. Applied Soil Ecology 84, 93–111.
Wheat plants invest more in mycorrhizae and receive more benefits from them under adverse than favorable soil conditions.Crossref | GoogleScholarGoogle Scholar |

Al-Karaki G, McMichael B, Zak J (2004) Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14, 263–269.
Field response of wheat to arbuscular mycorrhizal fungi and drought stress.Crossref | GoogleScholarGoogle Scholar | 12942358PubMed |

Aranjuelo I, Cabrera-Bosquet L, Morcuende R, Avice JC, Nogués S, Araus JL, Martínez-Carrasco R, Pérez P (2011) Does ear C sink strength contribute to overcoming photosynthetic acclimation of wheat plants exposed to elevated CO2? Journal of Experimental Botany 62, 3957–3969.
Does ear C sink strength contribute to overcoming photosynthetic acclimation of wheat plants exposed to elevated CO2?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFCqurw%3D&md5=d448d31ab7efe77de696bd44346cfd70CAS | 21511906PubMed |

Aranjuelo I, Sanz-Saez A, Jauregui I, Irigoyen JJ, Araus JL, Sánchez-Díaz M, Erice G (2013) Harvest index, a parameter conditioning responsiveness of wheat plants to elevated CO2. Journal of Experimental Botany 64, 1879–1892.
Harvest index, a parameter conditioning responsiveness of wheat plants to elevated CO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmslSltLc%3D&md5=075105295a4d865d73c25960bc4ebc0cCAS | 23564953PubMed |

Arnon DI, Hoagland DR (1939) A comparison of water culture and soil as media for crop production. Science 89, 512–514.
A comparison of water culture and soil as media for crop production.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cvnt1Gjug%3D%3D&md5=113d86b83136a8f7fddb15dfa97ab707CAS | 17776587PubMed |

Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C (2005) Microbial co-operation in the rhizosphere. Journal of Experimental Botany 56, 1761–1778.
Microbial co-operation in the rhizosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvFKnt7g%3D&md5=901c106c17590b047ed7b109126d3ff1CAS | 15911555PubMed |

Bean SR, Lookhart GL (2000) Ultrafast capillary electrophoretic analysis of cereal storage proteins and its applications to protein characterization and cultivar differentiation. Journal of Agricultural and Food Chemistry 48, 344–353.
Ultrafast capillary electrophoretic analysis of cereal storage proteins and its applications to protein characterization and cultivar differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXpt10%3D&md5=3e54b021cd4289a46fc014acf8c2963eCAS | 10691639PubMed |

Bean SR, Bietz JA, Lookhart GL (1998) High-performance capillary electrophoresis of cereal proteins. Journal of Chromatography. A 814, 25–41.
High-performance capillary electrophoresis of cereal proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlt1Sru7g%3D&md5=fd0a0a14fea320f099859be4e7430718CAS | 9718685PubMed |

Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533.
Europe-wide reduction in primary productivity caused by the heat and drought in 2003.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVajs7rL&md5=e9b02821637abfcf0f2e88c5d9e14088CAS | 16177786PubMed |

Copper Development Association (2011) Copper in Human Health. Available at: www.copper.org/consumers/health/cu_health-uk.html

D’Egidio MG, Mariani BM, Nardi S, Novaro P, Cubadda R (1990) Chemical and technological variables and their relationships: A predictive equation for pasta cooking quality. Cereal Chemistry 67, 275–281.

De Luis I, Irigoyen JJ, Sánchez-Díaz M (1999) Elevated CO2 enhances plant growth in droughted N2-fixing alfalfa without improving water status. Physiologia Plantarum 107, 84–89.
Elevated CO2 enhances plant growth in droughted N2-fixing alfalfa without improving water status.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsVGmsbc%3D&md5=310f3a133c3b147cdc92b8199e109f58CAS |

Erice G, Sanz-Saez A, Urdiain A, Araus JL, Irigoyen JJ, Aranjuelo I (2014) Harvest index combined with impaired N availability constrains the responsiveness of durum wheat to elevated CO2 concentration and terminal water stress. Functional Plant Biology 41, 1138–1147.
Harvest index combined with impaired N availability constrains the responsiveness of durum wheat to elevated CO2 concentration and terminal water stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1ymt7vM&md5=a44511e2993815a0bca3da8f49df05baCAS |

European Environmental Agency (2013) Climate change, impacts and vulnerability in Europe 2012. An indicator-based report. EEA Report no. 12. Available at: www.eea.europa.eu/publications/climate-impacts-and-vulnerability-2012

FAO/WHO (2001) Human vitamin and mineral requirements. Report of a joint FAO/WHO Expert Consultation in Bangkok, Thailand. Food and Agricultural Organization of The United Nations and World Health Organization. Food and Nutrition Division, FAO Rome. Available at: www.fao.org/docrep/004/y2809e/y2809e00.htm

Fernando N, Panozzo J, Tausz M, Norton RM, Fitzgerald GJ, Myers S, Walker C, Stangoulis J, Seneweera S (2012) Wheat grain quality under increasing atmospheric CO2 concentrations in a semi-arid cropping system. Journal of Cereal Science 56, 684–690.
Wheat grain quality under increasing atmospheric CO2 concentrations in a semi-arid cropping system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1yqu7zP&md5=43a8fd3ef855582ffdd52f0ba59f80baCAS |

Fitzpatrick EA (1970) ‘The expectancy of deficient winter rainfall and the potential for severe drought in the southwest of Western Australia.’ Miscellaneous Publication Vol. 70/1. (Institute of Agriculture, The University of Western Australia: Perth, W. Aust.)

Flagella Z, Giuliani MM, Giuzio L, Volpi C, Masci S (2010) Influence of water deficit on durum wheat storage protein composition and technological quality. European Journal of Agronomy 33, 197–207.
Influence of water deficit on durum wheat storage protein composition and technological quality.Crossref | GoogleScholarGoogle Scholar |

Fois S, Schlichting L, Marchylo B, Dexter J, Motzo R, Giunta F (2011) Environmental conditions affects semolina quality in durum wheat (Triticum turgidum ssp. durum L.) cultivars with different gluten strength and gluten protein composition. Journal of the Science of Food and Agriculture 91, 2664–2673.
Environmental conditions affects semolina quality in durum wheat (Triticum turgidum ssp. durum L.) cultivars with different gluten strength and gluten protein composition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1yhtb7J&md5=95ac822fec925afbbce1a96db4b846a6CAS | 21842525PubMed |

Hetrick BAD, Wilson GWT, Cox TS (1992) Mycorrhizal dependence of modern wheat varieties, landraces, and ancestors. Canadian Journal of Botany 70, 2032–2040.
Mycorrhizal dependence of modern wheat varieties, landraces, and ancestors.Crossref | GoogleScholarGoogle Scholar |

Högy P, Fangmeier A (2008) Effects of elevated atmospheric CO2 on grain quality of wheat. Journal of Cereal Science 48, 580–591.
Effects of elevated atmospheric CO2 on grain quality of wheat.Crossref | GoogleScholarGoogle Scholar |

Högy P, Zörb C, Langenkämper G, Betsche T, Fangmeier A (2009) Atmospheric CO2 enrichment changes the wheat grain proteome. Journal of Cereal Science 50, 248–254.
Atmospheric CO2 enrichment changes the wheat grain proteome.Crossref | GoogleScholarGoogle Scholar |

Högy P, Keck M, Niehaus K, Franzaring J, Fangmeier A (2010) Effects of atmospheric CO2 enrichment on biomass, yield and low molecular weight metabolites in wheat grain. Journal of Cereal Science 52, 215–220.
Effects of atmospheric CO2 enrichment on biomass, yield and low molecular weight metabolites in wheat grain.Crossref | GoogleScholarGoogle Scholar |

Högy P, Brunnbauer M, Koehler P, Schwadorf K, Breuer J, Franzaring J, Zhunusbayeva D, Fangmeier A (2013) Grain quality characteristics of spring wheat (Triticum aestivum) as affected by free-air CO2 enrichment. Environmental and Experimental Botany 88, 11–18.
Grain quality characteristics of spring wheat (Triticum aestivum) as affected by free-air CO2 enrichment.Crossref | GoogleScholarGoogle Scholar |

Jansa J, Bukovská P, Gryndler M (2013) Mycorrhizal hyphae as ecological niche for highly specialized hypersymbionts—or just soil free-riders? Frontiers in Plant Science 4, 134
Mycorrhizal hyphae as ecological niche for highly specialized hypersymbionts—or just soil free-riders?Crossref | GoogleScholarGoogle Scholar | 23720665PubMed |

Krüger M, Krüger C, Walker C, Stockinger H, Schüßle A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytologist 193, 970–984.
Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level.Crossref | GoogleScholarGoogle Scholar | 22150759PubMed |

Loladze I (2014) Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition. eLife 3, e02245
Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition.Crossref | GoogleScholarGoogle Scholar | 24867639PubMed |

Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annual Review of Plant Biology 55, 591–628.
Rising atmospheric carbon dioxide: plants FACE the future.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvFeisb8%3D&md5=2834fab17c06c7c7cd0c3f1e0d76dc21CAS | 15377233PubMed |

Mohammad MJ, Pan WL, Kennedy AC (1998) Seasonal mycorrhizal colonization of winter wheat and its effect on wheat growth under dryland field conditions. Mycorrhiza 8, 139–144.
Seasonal mycorrhizal colonization of winter wheat and its effect on wheat growth under dryland field conditions.Crossref | GoogleScholarGoogle Scholar |

Morales F, Pascual I, Sánchez-Díaz M, Aguirreoloea J, Irigoyen JJ, Goicoechea N, Antolín MC, Oyarzun M, Urdiain A (2014) Methodological advances: Using greenhouses to simulate climate change scenarios. Plant Science 226, 30–40.
Methodological advances: Using greenhouses to simulate climate change scenarios.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtlCltL8%3D&md5=252d5c10b546981b6c0a7f335b6cdb9bCAS | 25113448PubMed |

Oury F, Godin C, Mailliard A, Chassin A, Gardet O, Giraud A, Heumez E, Morlais J-Y, Rolland B, Rousset M, Trottet M, Charmet G (2012) A study of genetic progress due to selection reveals a negative effect of climate change on bread wheat yield in France. European Journal of Agronomy 40, 28–38.
A study of genetic progress due to selection reveals a negative effect of climate change on bread wheat yield in France.Crossref | GoogleScholarGoogle Scholar |

Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society 55, 158–161.
Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection.Crossref | GoogleScholarGoogle Scholar |

Prandi B, Mantovani P, Galaveerna G, Sforza S (2014) Genetic and environmental factors affecting pathogenicity of wheat as related to celiac disease. Journal of Cereal Science 59, 62–69.
Genetic and environmental factors affecting pathogenicity of wheat as related to celiac disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVagsbzE&md5=3b84a13372e02265a1444d1f528f4141CAS |

Rawson HM, Gifford RM, Condon BN (1995) Temperature gradient chambers for research on global environment change. I. Portable chambers for research on short-stature vegetation. Plant, Cell & Environment 18, 1048–1054.
Temperature gradient chambers for research on global environment change. I. Portable chambers for research on short-stature vegetation.Crossref | GoogleScholarGoogle Scholar |

Ronda F, Rodríguez-Nogales JM, Sancho D, Oliete B, Gómez M (2008) Multivariate optimisation of a capillary electrophoretic method for the separation of glutenins. Application to quantitative analysis of the endosperm storage proteins in wheat. Food Chemistry 108, 287–296.
Multivariate optimisation of a capillary electrophoretic method for the separation of glutenins. Application to quantitative analysis of the endosperm storage proteins in wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitVGhuw%3D%3D&md5=740103c966b4a44fc1f1aee7d6c8710dCAS |

Schüβler A, Schwarzott D, Walker C (2001) A new phylum, the Glomeromycota: phylogeny and evolution. Mycological Research 105, 1413–1421.
A new phylum, the Glomeromycota: phylogeny and evolution.Crossref | GoogleScholarGoogle Scholar |

Shewry PR (2009) Wheat. Journal of Experimental Botany 60, 1537–1553.
Wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFWiu7s%3D&md5=a1f114043a0b17047715ae7eb6161f6cCAS | 19386614PubMed |

Shewry PR, Halford NG (2002) Cereal seed storage proteins: structures, properties and role in grain utilization. Journal of Experimental Botany 53, 947–958.
Cereal seed storage proteins: structures, properties and role in grain utilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivFSntbY%3D&md5=48f09b0f552776333e8534c54868b17fCAS | 11912237PubMed |

Singh AK, Hamel C, DePauw RM, Knox RE (2012) Genetic variability in arbuscular mycorrhizal fungi compatibility supports the selection of durum wheat genotypes for enhancing soil ecological services and cropping systems in Canada. Canadian Journal of Microbiology 58, 293–302.
Genetic variability in arbuscular mycorrhizal fungi compatibility supports the selection of durum wheat genotypes for enhancing soil ecological services and cropping systems in Canada.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotlCktrg%3D&md5=b4505ef3e448e5ff208ed7c72ed65799CAS | 22356605PubMed |

Sissons M (2008) Role of durum wheat composition on the quality of pasta and bread. Food 2, 75–90.

Tack J, Barkley A, Nalley LL (2015) Effect of warming temperatures on US wheat yields. Proceedings of the National Academy of Sciences of the United States of America 112, 6931–6936.
Effect of warming temperatures on US wheat yields.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXotFCmsLk%3D&md5=29594f6b3fd62ff2b7c50bf69d5ab1d8CAS | 25964323PubMed |

Talaat NB, Shawky BT (2014) Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity. Environmental and Experimental Botany 98, 20–31.
Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFWjtLvM&md5=aceb03af59bcfbb56764def8cbae7e31CAS |

Troccoli A, Borreli GM, De Vita P, Fares C, Di Fonzo N (2000) Durum wheat quality: A multidisciplinary concept. Journal of Cereal Science 32, 99–113.
Durum wheat quality: A multidisciplinary concept.Crossref | GoogleScholarGoogle Scholar |

White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist 182, 49–84.
Biofortification of crops with seven mineral elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, selenium and iodine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVKhtbw%3D&md5=ae27d4af59672895a191457854fe8139CAS | 19192191PubMed |

Yang F, Jørgensen AD, Li HW, Søndergaard I, Finnie C, Svensson B, Jiang D, Wollenweber B, Jacobsen B (2011) Implications of high-temperature events and water deficits on protein profiles in wheat (Triticum aestivum L. cv. Vinjett) grain. Proteomics 11, 1684–1695.
Implications of high-temperature events and water deficits on protein profiles in wheat (Triticum aestivum L. cv. Vinjett) grain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslOhtrs%3D&md5=f5db61cad1e670f9c52c0c85a7015f31CAS | 21433286PubMed |

Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Research 14, 415–421.
A decimal code for the growth stages of cereals.Crossref | GoogleScholarGoogle Scholar |

Zhang Y-f, Huang X-w, Wang L-l, Wei L, Wu Z-h, You M-s, Li B (2014) Proteomic analysis of wheat seed in response to drought stress. Journal of Integrative Agriculture 13, 919–925.
Proteomic analysis of wheat seed in response to drought stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFyqu7w%3D&md5=73958bcc32b0c5ba6914c4114e2e275aCAS |