CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Australian Journal of Chemistry   
Australian Journal of Chemistry
Journal Banner
  An international journal for chemical science
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
For Advertisers
Content
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
Covers
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

Affiliated with RACI

Royal Australian Chemical Institute
Royal Australian
Chemical Institute


 

Article << Previous     |     Next >>   Contents Vol 65(12)

Photocatalytic Hydrogen Evolution Using 9-Phenyl-10-methyl-acridinium Ion Derivatives as Efficient Electron Mediators and Ru-Based Catalysts

Yusuke Yamada A , Kentaro Yano A and Shunichi Fukuzumi A B C

A Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan.
B Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea.
C Corresponding author. Email: fukuzumi@chem.eng.osaka-u.ac.jp

Australian Journal of Chemistry 65(12) 1573-1581 http://dx.doi.org/10.1071/CH12294
Submitted: 19 June 2012  Accepted: 1 August 2012   Published: 13 September 2012


 
PDF (829 KB) $25
 Supplementary Material
 Export Citation
 Print
  
Abstract

Photocatalytic hydrogen evolution has been performed by photoirradiation (λ > 420 nm) of a mixed solution of a phthalate buffer and acetonitrile (MeCN) (1 : 1 (v/v)) containing EDTA disodium salt (EDTA), [RuII(bpy)3]2+ (bpy = 2,2′-bipyiridine), 9-phenyl-10-methylacridinium ion (Ph–Acr+–Me), and Pt nanoparticles (PtNPs) as a sacrificial electron donor, a photosensitiser, an electron mediator, and a hydrogen-evolution catalyst, respectively. The hydrogen-evolution rate of the reaction system employing Ph–Acr+–Me as an electron mediator was more than 10 times higher than that employing a conventional electron mediator of methyl viologen. In this reaction system, ruthenium nanoparticles (RuNPs) also act as a hydrogen-evolution catalyst as well as the PtNPs. The immobilization of the efficient electron mediator on the surface of a hydrogen-evolution catalyst is expected to enhance the hydrogen-evolution rate. The methyl group of Ph–Acr+–Me was chemically modified with a carboxy group (Ph–Acr+–CH2COOH) to interact with metal oxide surfaces. In the photocatalytic hydrogen-evolution system using Ph–Acr+–CH2COOH and Pt-loaded ruthenium oxide nanoparticles (Pt/RuO2NPs) as electron donor and hydrogen-evolution catalyst, respectively, the hydrogen-evolution rate was 1.5–2 times faster than the reaction system using Ph–Acr+–Me as an electron mediator. On the other hand, no enhancement in the hydrogen-evolution rate was observed in the reaction system using Ph–Acr+–CH2COOH with PtNPs. Thus, the enhancement of hydrogen-evolution rate originated from the favourable interaction between Ph–Acr+–CH2COOH and RuO2NPs. These results suggest that the use of Ph–Acr+–Me as an electron mediator enables the photocatalytic hydrogen evolution using PtNPs and RuNPs as hydrogen-evolution catalysts, and the chemical modification of Ph–Acr+–Me with a carboxy group paves the way to utilise a supporting catalyst, Pt loaded on a metal oxide, as a hydrogen-evolution catalyst.





References

[1]  S. Dunn, in Encyclopedia of Energy (Ed. C. J. Cleaveland) 2004, Vol. 3, pp. 241–252 (Elsevier/Academic Press: San Diego, CA).

[2]  S. Fukuzumi, Eur. J. Inorg. Chem. 2008, 1351.
         | CrossRef | CAS |

[3]  M. Momirlan, T. N. Veziroglub, Int. J. Hydrogen Energy 2005, 30, 795.
         | CrossRef | CAS |

[4]  S. Fukuzumi, Y. Yamada, T. Suenobu, K. Ohkubo, H. Kotani, Energ. Environ. Sci. 2011, 4, 2754.
         | CAS |

[5]  G. Laurenczy, in Encyclopedia of Catalysis (Ed. I. T. Horvath) 2010 (Wiley-Interscience: Hoboken, NJ). 10.1002/0471227617.EOC111.PUB2

[6]  H. B. Gray, Nat. Chem. 2009, 1, 7.
         | CrossRef | CAS |

[7]  N. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. USA 2006, 103, 15729.
         | CrossRef | CAS |

[8]  D. G. Nocera, Chem. Soc. Rev. 2009, 38, 13.
         | CrossRef | CAS |

[9]  (a) P. A. Brugger, P. Cuendet, M. Grätzel, J. Am. Chem. Soc. 1981, 103, 2923.
         | CrossRef | CAS |
      (b) C. K. Grätzel, M. Grätzel, J. Am. Chem. Soc. 1979, 101, 7741.
         | CrossRef |
      (c) K. Kalyanasundaram, J. Kiwi, M. Grätzel, Helv. Chim. Acta 1978, 61, 2720.
         | CrossRef |
      (d) J. Kiwi, M. Grätzel, Angew. Chem. Int. Ed. 1979, 18, 624.
         | CrossRef |
      (e) J. Kiwi, M. Grätzel, Nature 1979, 281, 657.
         | CrossRef |
      (f) J. Kiwi, M. Grätzel, J. Am. Chem. Soc. 1979, 101, 7214.
         | CrossRef |
      (g) J. Kiwi, K. Kalyanasundaram, M. Grätzel, Sol. Energ. Mater. 1982, 49, 37.
         | CrossRef |

[10]  H. B. Gray, A. W. Maverick, Science 1981, 214, 1201.
         | CrossRef | CAS |

[11]  (a) G. M. Brown, B. S. Brunschwig, C. Creutz, J. F. Endicott, N. Sutin, J. Am. Chem. Soc. 1979, 101, 1298.
         | CrossRef | CAS |
      (b) S. F. Chan, M. Chou, C. Creutz, T. Matsubara, N. Sutin, J. Am. Chem. Soc. 1981, 103, 369.
         | CrossRef |
      (c) N. Sutin, C. Creutz, E. Fujita, Comment. Inorg. Chem. 1997, 19, 67.
         | CrossRef |

[12]  (a) N. Toshima, Pure Appl. Chem. 2000, 72, 317.
         | CrossRef | CAS |
      (b) N. Toshima, K. Hirakawa, Polym. J. 1999, 31, 1127.
         | CrossRef |
      (c) N. Toshima, M. Kuriyama, Y. Yamada, H. Hirai, Chem. Lett. 1981, 10, 793.
         | CrossRef |
      (d) N. Toshima, T. Yonezawa, Makromol. Chem. Macromol. Symp. 1992, 59, 281.
         | CrossRef |
      (e) N. Toshima, T. Yonezawa, New J. Chem. 1998, 22, 1179.
         | CrossRef |

[13]  (a) T. Yonezawa, N. Toshima, J. Mol. Catal. 1993, 83, 167.
         | CrossRef | CAS |
      (b) I. Okura, N. Kimthuan, J. Mol. Catal. 1979, 6, 227.
         | CrossRef |
      (c) I. Okura, M. Takeuchi, N. Kimthuan, Photochem. Photobiol. 1981, 33, 413.
         | CrossRef |
      (d) I. Okura, S. Aono, S. Kusunoki, Inorg. Chim. Acta 1983, 71, 77.
         | CrossRef |

[14]  (a) L. Persaud, A. J. Bard, A. Campion, M. A. Fox, T. E. Mallouk, S. E. Webber, J. M. White, J. Am. Chem. Soc. 1987, 109, 7309.
         | CrossRef | CAS |
      (b) D. L. Jiang, C. K. Choi, K. Honda, W. S. Li, T. Yuzawa, T. Aida, J. Am. Chem. Soc. 2004, 126, 12084.
         | CrossRef |

[15]  (a) Y. Amao, ChemCatChem 2011, 3, 458.
         | CrossRef | CAS |
      (b) N. Himeshima, Y. Amao, Energy Fuels 2003, 17, 1641.
         | CrossRef |

[16]  (a) S. Rau, B. Schafer, D. Gleich, E. Anders, M. Rudolph, M. Friedrich, H. Gorls, W. Henry, J. G. Vos, Angew. Chem. Int. Ed. 2006, 45, 6215.
         | CrossRef | CAS |
      (b) S. Tschierlei, M. Karnahl, M. Presselt, B. Dietzek, J. Guthmuller, L. Gonzalez, M. Schmitt, S. Rau, J. Popp, Angew. Chem. Int. Ed. 2010, 49, 3981.
         | CrossRef |
      (c) S. Tschierlei, M. Presselt, C. Kuhnt, A. Yartsev, T. Pascher, V. Sundstrom, M. Karnahl, M. Schwalbe, B. Schafer, S. Rau, M. Schmitt, B. Dietzek, J. Popp, Chem.–Eur. J. 2009, 15, 7678.
         | CrossRef |

[17]  (a) H. Ozawa, M. A. Haga, K. Sakai, J. Am. Chem. Soc. 2006, 128, 4926.
         | CrossRef | CAS |
      (b) H. Ozawa, M. Kobayashi, B. Balan, S. Masaoka, K. Sakai, Chem. Asian J. 2010, 5, 1860.
         | CrossRef |
      (c) H. Ozawa, K. Sakai, Chem. Commun. 2011, 47, 2227.
         | CrossRef |
      (d) H. Ozawa, Y. Yokoyama, M. Haga, K. Sakai, Dalton Trans. 2007, 1197.
         | CrossRef |
      (e) S. Tanaka, S. Masaoka, K. Yamauchi, M. Annaka, K. Sakai, Dalton Trans. 2010, 39, 11218.
         | CrossRef |

[18]  (a) M. Wang, Y. Na, M. Gorlov, L. Sun, Dalton Trans. 2009, 6458.
         | CrossRef | CAS |
      (b) P. Zhang, M. Wang, J. Dong, X. Li, F. Wang, L. Wu, L. Sun, J. Phys. Chem. C 2010, 114, 15868.
         | CrossRef |
      (c) P. Zhang, M. Wang, C. Li, X. Li, J. Dong, L. Sun, Chem. Commun. 2010, 46, 8806.
         | CrossRef |
      (d) P. Zhang, M. Wang, Y. Na, X. Li, Y. Jiang, L. Sun, Dalton Trans. 2010, 39, 1204.
         | CrossRef |
      (e) W. Gao, J. Sun, M. Li, T. Åkermark, K. Romare, L. Sun, B. Åkermark, Eur. J. Inorg. Chem. 2011, 1100.
         | CrossRef |

[19]  M. Grätzel, Acc. Chem. Res. 1981, 14, 376.
         | CrossRef |

[20]  (a) E. Amouyal, B. Zidler, P. Keller, A. Moradpour, Chem. Phys. Lett. 1980, 74, 314.
         | CrossRef | CAS |
      (b) E. Amouyal, B. Zidler, Isr. J. Chem. 1982, 22, 117.

[21]  P. Keller, A. Moradpour, E. Amouyal, B. Zidler, J. Mol. Catal. 1981, 12, 261.
         | CrossRef | CAS |

[22]  C. Königstein, J. Photochem. Photobiol. A 1995, 90, 141.
         | CrossRef |

[23]  C. V. Krishnan, N. Sutin, J. Am. Chem. Soc. 1981, 103, 2141.
         | CrossRef | CAS |

[24]  C. V. Krishnan, B. S. Brunschwig, C. Creutz, N. Sutin, J. Am. Chem. Soc. 1985, 107, 2005.
         | CrossRef | CAS |

[25]  J. Hawecker, J.-M. Lehn, R. Ziessel, Nouv. J. Chim. 1983, 7, 271.
         | CAS |

[26]  J.-M. Lehn, J. P. Sauvage, Nouv. J. Chim. 1977, 1, 449.
         | CAS |

[27]  G. M. Brown, S. F. Chan, C. Creutz, H. A. Schwarz, N. Sutin, J. Am. Chem. Soc. 1979, 101, 7638.
         | CrossRef | CAS |

[28]  S. F. Chan, M. Chou, C. Creutz, T. Matsubara, N. Sutin, J. Am. Chem. Soc. 1981, 103, 369.
         | CrossRef | CAS |

[29]  M. Kirch, J.-M. Lehn, J. P. Sauvage, Helv. Chim. Acta 1979, 62, 1345.
         | CrossRef | CAS |

[30]  S. Harinipriya, M. V. Sangaranarayanan, Langmuir 2002, 18, 5572.
         | CrossRef | CAS |

[31]  (a) J. L. Dempsey, J. R. Winkler, H. B. Gray, J. Am. Chem. Soc. 2010, 132, 1060.
         | CrossRef | CAS |
      (b) J. L. Dempsey, J. R. Winkler, H. B. Gray, J. Am. Chem. Soc. 2010, 132, 16774.
         | CrossRef |
      (c) J. L. Dempsey, B. S. Brunschwig, J. R. Winkler, H. B. Gray, Acc. Chem. Res. 2009, 42, 1995.
         | CrossRef |

[32]  (a) P. W. Du, K. Knowles, R. Eisenberg, J. Am. Chem. Soc. 2008, 130, 12576.
         | CrossRef | CAS |
      (b) T. Lazarides, T. Mccormick, P. W. Du, G. G. Luo, B. Lindley, R. Eisenberg, J. Am. Chem. Soc. 2009, 131, 9192.
         | CrossRef |

[33]  X. L. Hu, B. S. Brunschwig, J. C. Peters, J. Am. Chem. Soc. 2007, 129, 8988.
         | CrossRef | CAS |

[34]  (a) B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jorgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, J. K. Nørskov, J. Am. Chem. Soc. 2005, 127, 5308.
         | CrossRef | CAS |
      (b) H. I. Karunadasa, C. J. Chang, J. R. Long, Nature 2010, 464, 1329.
         | CrossRef |

[35]  L. Loy, E. E. Wolf, Sol. Energy 1985, 34, 455.
         | CrossRef | CAS |

[36]  (a) Y. Yamada, T. Miyahigashi, H. Kotani, K. Ohkubo, S. Fukuzumi, J. Am. Chem. Soc. 2011, 133, 16136.
         | CrossRef | CAS |
      (b) Y. Yamada, T. Miyahigashi, H. Kotani, K. Ohkubo, S. Fukuzumi, Energ. Environ. Sci. 2012, 5, 6111.

[37]  H. Kotani, R. Hanazaki, K. Ohkubo, Y. Yamada, S. Fukuzumi, Chem.–Eur. J. 2011, 17, 2777.
         | CrossRef | CAS |

[38]  E. Amouyal, P. Keller, A. Moradpour, J. Chem. Soc., Chem. Commun. 1980, 1019.
         | CrossRef | CAS |

[39]  J. M. Kleijn, Colloid Polym. Sci. 1987, 265, 1105.
         | CrossRef | CAS |

[40]  E. Amouyal, Sol. Energy Mater. Sol. Cells 1995, 38, 249.
         | CrossRef | CAS |

[41]  (a) K. Ohkubo, K. Suga, S. Fukuzumi, Chem. Commun. 2006, 2018.
         | CrossRef | CAS |
      (b) K. Suga, K. Ohkubo, S. Fukuzumi, J. Phys. Chem. A 2005, 109, 10168.
         | CrossRef |

[42]     (a) R. W. G. Wyckoff, Crystal Structures 1963, 2nd edn (Interscience Publishers: New York, NY).
      (b) W. H. Baur, A. A. Khan, Acta Crystallogr. B 1971, 27, 2133.
         | CrossRef |

[43]  S. Fukuzumi, R. Hanazaki, H. Kotani, K. Ohkubo, J. Am. Chem. Soc. 2010, 132, 11002.
         | CrossRef | CAS |

[44]  H. Kotani, K. Ohkubo, Y. Takai, S. Fukuzumi, J. Phys. Chem. B 2006, 110, 24047.
         | CrossRef | CAS |


   
Subscriber Login
Username:
Password:  

 


    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014