Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Processing 15-nm Nanodiamonds Containing Nitrogen-vacancy Centres for Single-molecule FRET

Jana M. Say A B , Carlo Bradac A , Torsten Gaebel A , James R. Rabeau A and Louise J. Brown B C
+ Author Affiliations
- Author Affiliations

A ARC Centre of Excellence for Engineered Quantum Systems (EQUS), Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109, Australia.

B Department of Chemistry and Biomolecular Science, Macquarie University, Sydney, NSW 2109, Australia.

C Corresponding author. Email: louise.brown@mq.edu.au

Australian Journal of Chemistry 65(5) 496-503 https://doi.org/10.1071/CH12103
Submitted: 16 February 2012  Accepted: 23 March 2012   Published: 18 May 2012

Abstract

Colour centres in nanodiamonds have many properties such as chemical and physical stability, biocompatibility, straightforward surface functionalisation as well as bright and stable photoluminescence, which make them attractive for biological applications. Here we examine the use of fluorescent nanodiamonds containing a single nitrogen-vacancy (NV) centre, as an alternative nano-label over conventional fluorophores. We describe a series of chemical treatments and air oxidation to reliably produce small (~15 nm) oxidised nanodiamonds suitable for applications in bioscience. We use Förster resonance energy transfer to measure the coupling efficiency from a single NV centre in a selected nanodiamond to an IRDye 800CW dye molecule absorbed onto the surface. Our single-molecule Förster resonance energy transfer analysis, based on fluorescence lifetime measurements, locates the position of the photostable NV centre deep within the core of the nanodiamond.


References

[1]  A. M. Zaitsev, Optical Properties of Diamond 2001 (Springer: Berlin).

[2]  G. Davies, M. F. Hamer, Proc. R. Soc. Lond. A Math. Phys. Sci. 1976, 348, 285.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XhslWktLs%3D&md5=aa7eb18f01cc6e6f6b8f12862ff78a8eCAS |

[3]  N. Diep Lai, D. Zheng, F. Treussart, J.-F. Roch, J. Nanosci. Nanotechnol. 2010, 1, 015014.

[4]  C. Kurtsiefer, S. Mayer, P. Zarda, H. Weinfurter, Phys. Rev. Lett. 2000, 85, 290.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXks1ektbg%3D&md5=452e260555526af34fa4d6ca039f585bCAS |

[5]  G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, J. Wrachtrup, Nature 2008, 455, 648.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtF2hsbnE&md5=be3b0a51b6aaf17b5594f6d2b14581ceCAS |

[6]  J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. G. Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, M. D. Lukin, Nature 2008, 455, 644.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtF2hsbvL&md5=549d2a05bd71070f0d98ae88ce0c2901CAS |

[7]  J. M. Say, C. Vreden, D. J. Reilly, L. J. Brown, J. R. Rabeau, N. J. C. King, Biophys. Rev. 2011, 3, 171.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2nu7rJ&md5=3f146e717be10c90e8617c13a5c86f20CAS |

[8]  A. M. Schrand, S. A. C. Hens, O. A. Shenderova, Crit. Rev. Solid State Mater. Sci. 2009, 34, 18.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsFWrurs%3D&md5=b5921ab5c8fa3bb4f3dedcf78b142fecCAS |

[9]  Y. Mita, Phys. Rev. B Condens. Matter 1996, 53, 11360.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XivVartr0%3D&md5=ef57ad0bbfc611e6355172bf0b685fa2CAS |

[10]  N. Billinton, A. W. Knight, Anal. Biochem. 2001, 291, 175.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitlaqu7s%3D&md5=51319ef093bf94f62f5bd8cc47c34f06CAS |

[11]  S. C. Rand, in Properties and Growth of Diamond (Ed. G. Davies) 1994, pp. 235 (INSPEC, the Institution of Electrical Engineers: London).

[12]  A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wrachtrup, C. von Borczyskowski, Science 1997, 276, 2012.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkt1Wms7g%3D&md5=92dd7ea83f28e7341099ccf7acced1acCAS |

[13]  H. B. Dyer, L. Du Preez, J. Chem. Phys. 1965, 42, 1898.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXmtlahtA%3D%3D&md5=ee1fe94a879c3f4beb7a49972c49f509CAS |

[14]  Y.-R. Chang, H.-Y. Lee, K. Chen, C.-C. Chang, D.-S. Tsai, C.-C. Fu, T.-S. Lim, Y.-K. Tzeng, C.-Y. Fang, C.-C. Han, H.-C. Chang, W. Fann, Nat. Nanotechnol. 2008, 3, 284.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsFSlt70%3D&md5=a9978e5bb39befcad7db6ec0a43a504fCAS |

[15]  S.-J. Yu, M.-W. Kang, H.-C. Chang, K.-M. Chen, Y.-C. Yu, J. Am. Chem. Soc. 2005, 127, 17604.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Gju7fM&md5=890b74b173238d0432cff3ea79d63605CAS |

[16]  A. M. Schrand, H. Huang, C. Carlson, J. J. Schlager, S. M. Eiji, H. L. Dai, J. Phys. Chem. B 2007, 111, 2.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlSrsrrE&md5=28d8fad0dd8d8caadc117ae6c060bb1aCAS |

[17]  A. M. Derfus, W. C. W. Chan, S. N. Bhatia, Nano Lett. 2004, 4, 11.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXps1SmtLo%3D&md5=8fe4a8d12b5852cbb0925607a681ecb7CAS |

[18]  S. J. Cho, D. Maysinger, M. Jain, B. Röder, S. Hackbarth, F. M. Winnik, Langmuir 2007, 23, 1974.
         | 1:CAS:528:DC%2BD2sXktFSgtg%3D%3D&md5=f747c3b69a7041b5570b4ac90e5d8d7aCAS |

[19]  T. Förster, Annalen der Physik 1948, 437, 55.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  J. R. Lakowicz, Principles of Fluorescence Spectroscopy 2006, 3rd edn. (Springer: New York).

[21]  J. Tisler, R. Reuter, A. Lämmle, F. Jelezko, G. Balasubramanian, P. R. Hemmer, F. Reinhard, J. Wrachtrup, ACS Nano 2011, 5, 7893.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFCmtbjL&md5=f2853745b1b9035967574af4205d3d64CAS |

[22]  Y.-Y. Chen, H. Shu, Y. Kuo, Y.-K. Tzeng, H.-C. Chang, Diamond Relat. Mater. 2011, 20, 803.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtlyrtb4%3D&md5=7a8d951427cb2dc8af5dfd5cb8d54a30CAS |

[23]  N. Mohan, Y.-K. Tzeng, L. Yang, Y.-Y. Chen, Y. Y. Hui, C.-Y. Fang, H.-C. Chang, Adv. Mater. 2010, 22, 843.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitFentbg%3D&md5=6d6029356643c78ebbb732c4a48cf6e7CAS |

[24]  C. Bradac, T. Gaebel, N. Naidoo, M. J. Sellars, J. Twamley, L. J. Brown, A. S. Barnard, T. Plakhotnik, A. V. Zvyagin, J. R. Rabeau, Nat. Nanotechnol. 2010, 5, 345.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXls12isLo%3D&md5=e7b3eef800bd2990815d45ec2644c573CAS |

[25]  T. Gaebel, C. Bradac, J. Chen, J. M. Say, L. Brown, P. Hemmer, J. R. Rabeau, Diamond Relat. Mater. 2012, 21, 28.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xks1Cluw%3D%3D&md5=b6d69b35e4f5e2ae4237dcbdf192ca51CAS |

[26]  C. Bradac, T. Gaebel, N. Naidoo, J. R. Rabeau, A. S. Barnard, Nano Lett. 2009, 9, 3555.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVelurnK&md5=bd18ba7195208aff9d3b433771c6ee60CAS |

[27]  A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, P. Grangier, Phys. Rev. A 2001, 64, 061802.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  B. R. Smith, D. Gruber, T. Plakhotnik, Diamond Relat. Mater. 2010, 19, 314.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitlSht7c%3D&md5=cdead46a6457e0b3566c0c3ad9cd412cCAS |

[29]  V. Mochalin, S. Osswald, Y. Gogotsi, Chem. Mater. 2009, 21, 273.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV0%3D&md5=cdea7fe89edd328fa77b9afa83bad829CAS |

[30]  S. Osswald, G. Yushin, V. Mochalin, S. O. Kucheyev, Y. Gogotsi, J. Am. Chem. Soc. 2006, 128, 11635.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1Kgsrw%3D&md5=f0a8a1e6d1036e1e1edef608ffbb6142CAS |

[31]  P.-H. Chung, E. Perevedentseva, J.-S. Tu, C. C. Chang, C.-L. Cheng, Diamond Relat. Mater. 2006, 15, 622.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsVCqsrs%3D&md5=aac52c45e096f559aab72f0efb5d6795CAS |

[32]  B. Spitsyn, J. Davidson, M. Gradoboev, T. Galushko, N. Serebryakova, T. Karpukhina, I. Kulakova, N. Melnik, Diamond Relat. Mater. 2006, 15, 296.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xit1Cgtro%3D&md5=d305a9ddb839f74051e178bf11d2da93CAS |

[33]  N. Gibson, O. Shenderova, T. J. M. Luo, S. Moseenkov, V. Bondar, A. Puzyr, K. Purtov, Z. Fitzgerald, D. W. Brenner, Diamond Relat. Mater. 2009, 18, 620.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitFKnt7w%3D&md5=1fd478dd5fd568d4f59901b651cbe2d6CAS |

[34]  X. Xu, Z. Yu, Y. Zhu, B. Wang, J. Solid State Chem. 2005, 178, 688.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitlCnsrc%3D&md5=be780f6c33538bb20a052d6d39f97a8dCAS |

[35]  T.-T.-B. Nguyen, H.-C. Chang, V. W.-K. Wu, Diamond Relat. Mater. 2007, 16, 872.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkt1alu74%3D&md5=bd9ba4328bf89d6b3e4db2f9f0451307CAS |

[36]  A. Krueger, Chemistry 2008, 14, 1382.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvFaltbg%3D&md5=bcd81f1b09f228a2dca44d73474fbb45CAS |

[37]  Y. Morita, T. Takimoto, H. Yamanaka, K. Kumekawa, S. Morino, S. Aonuma, T. Kimura, N. Komatsu, Small 2008, 4, 2154.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvFOr&md5=285f0700184d6762d67209ea6edeefb7CAS |

[38]  T. Plakhotnik, D. Gruber, Phys. Chem. Chem. Phys. 2010, 12, 9751.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVantrbN&md5=08183ce903d08adb947a7c44cb5ba6aeCAS |

[39]  F. A. Inam, T. Gaebel, C. Bradac, L. Stewart, M. J. Withford, J. M. Dawes, J. R. Rabeau, M. J. Steel, New J. Phys. 2011, 13, 073012.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  C.-C. Fu, H.-Y. Lee, K. Chen, T.-S. Lim, H.-Y. Wu, P.-K. Lin, P.-K. Wei, P.-H. Tsao, H.-C. Chang, W. Fann, Proc. Natl. Acad. Sci. USA 2007, 104, 727.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVegsLk%3D&md5=0622a47e814f3c0617bd8771644135bfCAS |

[41]  J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, J. R. Wrachtrup, ACS Nano 2009, 3, 1959.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotleitrs%3D&md5=45f662f45baf531752a4b085ec28863dCAS |