CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Australian Journal of Chemistry   
Australian Journal of Chemistry
Journal Banner
  An international journal for chemical science
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Board
For Advertisers
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

Affiliated with RACI

Royal Australian Chemical Institute
Royal Australian
Chemical Institute


Article << Previous     |     Next >>   Contents Vol 66(1)

Effects of Some Multivalent Ions on Coagulation and Electrokinetic Behaviours of Colemanite Particles

Havvanur Ucbeyiay A C and Alper Ozkan B

A Department of Mining Engineering, Seydisehir Ahmet Cengiz Engineering Faculty, Selcuk University, Seydisehir, 42370 Konya, Turkey.
B Department of Mining Engineering, Engineering and Architecture Faculty, Selcuk University, 42075 Konya, Turkey.
C Corresponding author. Email: hucbeyi@selcuk.edu.tr

Australian Journal of Chemistry 66(1) 3-8 http://dx.doi.org/10.1071/CH12340
Submitted: 18 July 2012  Accepted: 22 September 2012   Published: 31 October 2012

 Full Text
 PDF (1.1 MB)
 Export Citation

The effects of magnesium, barium, aluminium, and ferric cations as multivalent ions on the coagulation and electrokinetic behaviours of colemanite have been investigated in relation to pH and cation concentration. The zero point of charge for colemanite was determined to be at pH 10.2. The positive surface charge of colemanite increased in the presence of multivalent ions at pH values below the zero point of charge. Also, these ions changed the zeta potential of colemanite from negative to positive within the pH range 10.2 to 12. In the experiments, the coagulation of colemanite with ferric ions was more efficient than with the other ions and the effect of ferric ions varied considerably depending on the concentration and pH. The coagulation recovery values of colemanite suspension increased quickly up to 2.5 × 10–3 M concentration of ferric ions and the maximum value (~93 %) was obtained at a pH of 11.5. It was also found that the coagulation behaviour of the colemanite suspension in the presence of multivalent cations was in good agreement with the electrokinetic characteristics.


[1]  D. E. Garret, Borates 1998 (Academic Press Ltd: New York, NY).

[2]  M. S. Celik, M. Hancer, J. D. Miller, J. Colloid Interface Sci. 2002, 256, 121.
         | CrossRef | CAS |

[3]  S. Koca, M. Savas, Appl. Surf. Sci. 2004, 225, 347.
         | CrossRef | CAS |

[4]  J. S. Laskowski, in Colloid Chemistry in Mineral Processing (Eds J. S. Laskowski, J. Ralston) 1992, Ch. 7, pp. 225–241 (Elsevier: New York, NY).

[5]  M. C. Fuerstenau, Advances in Interfacial Phenomena of Particulate/solution/gas Systems. Applications to Flotation Research AICHE Symposium Series No. 150, (Eds P. Somasundaran and R. B. Grieves) 1975, 71, pp. 16–23 (American Institute of Chemical Engineers: New York, NY).

[6]  P. Somasundaran, in Fine Particle Processing (Ed. P. Somasundaran) 1980, pp. 947–975 (AIME: New York, NY).

[7]  R. R. Klimpel, Introduction to Chemicals Used in Particle Systems 1997, pp. 10–13 (ERC Particle Science & Technology: Gainesville, FL).

[8]  R. Hogg, Int. J. Miner. Process. 2000, 58, 223.
         | CrossRef | CAS |

[9]  J. R. Hunter, in Zeta Potential in Colloid Science: Principles and Applications, 3rd edn 1988, pp. 230–240 (Academic Press: San Diego, CA).

[10]  M. S. Celik, E. Yasar, J. Colloid Interface Sci. 1995, 173, 181.
         | CrossRef | CAS |

[11]  H. Ucbeyiay Sahinkaya, A. Ozkan, Separ. Purif. Tech. 2011, 80, 131.
         | CrossRef | CAS |

[12]  J. N. Butler, Ionic Equilibrium 1964, pp. 280–283 (Addison–Wesley: Boston, MA).

[13]  J. Kragten, Atlas of Metal–Ligand Equilibria in Aqueous Solution 1978, pp. 16–27 (Ellis Horwood: Chichester).

[14]  L. Dusoulier, R. Cloots, B. Vertruyena, J. L. Garcia-Fierro, R. Moreno, B. Ferrari, Mater. Chem. Phys. 2009, 116, 368.
         | CrossRef | CAS |

[15]  M. Kosmulski, Adv. Colloid Interface Sci. 2009, 152, 14.
         | CrossRef | CAS |

[16]  Y. Yükselen, A. Kaya, Water Air Soil Pollut. 2003, 145, 155.
         | CrossRef |

[17]  G. A. Parks, Chem. Rev. 1965, 65, 177.
         | CrossRef | CAS |

[18]  D. Fornasiero, J. Ralston, Int. J. Miner. Process. 2005, 76, 75.
         | CrossRef | CAS |


Legal & Privacy | Contact Us | Help


© CSIRO 1996-2014