CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Australian Journal of Chemistry   
Australian Journal of Chemistry
Journal Banner
  An international journal for chemical science
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Structure
Contacts
For Advertisers
Content
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
Covers
For Authors
General Information
Scope
Submit Article
Author Instructions
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

Affiliated with RACI

Royal Australian Chemical Institute
Royal Australian
Chemical Institute


 

Article << Previous     |     Next >>   Contents Vol 67(11)

Can Lignin Wastes Originating From Cellulosic Ethanol Biorefineries Act as Radical Scavenging Agents?

Caroline Vanderghem A , Nicolas Jacquet A and Aurore Richel A B

A Unit of Biological and Industrial Chemistry, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, B-5030 Gembloux, Belgium.
B Corresponding author. Email: a.richel@ulg.ac.be

Australian Journal of Chemistry 67(11) 1693-1699 http://dx.doi.org/10.1071/CH14074
Submitted: 15 February 2014  Accepted: 13 March 2014   Published: 8 May 2014


 
PDF (982 KB) $25
 Export Citation
 Print
  
Abstract

Lignin is a co-product from the biorefinery and paper industries. Its non-energetic valorisation remains a field of extensive research and development. In this perspective, this study was undertaken to evaluate the radical scavenging ability of selected herbaceous lignins. These lignins, extracted from either Miscanthus (Miscanthus × giganteus) or switchgrass (Panicum virgatum L.), were selected as benchmarks for this study based on their chemical structure and average molecular weight. These technical lignins, which are side-products in the bioethanol production process, displayed a moderate antioxidant activity as evaluated by the 1,1-diphenyl-2-picrylhydrazil free radical scavenging test system. A correlation between the radical scavenging properties and the molecular features is proposed and discussed. Infrared spectroscopy was employed as a straightforward qualitative prediction tool for assessing the radical scavenging capacity.





References

[1]  P. Laurent, J. Rois, J. L. Wertz, A. Richel, M. Paquot, Biotechnol. Agron. Soc. Environ. 2011, 15, 597.

[2]  P. Sannigrahi, Y. Pu, A. Ragauskas, Curr. Opin. Environ. Sustain. 2010, 2, 383.
         | CrossRef |

[3]  O. Rochez, G. Zorzini, J. Amadou, M. Claes, A. Richel, J. Mater. Sci. 2013, 48, 4962.
         | CrossRef | CAS |

[4]  C. Pouteau, P. Dole, B. Cathala, L. Averous, N. Boquillon, Polym. Degrad. Stabil. 2003, 81, 9.
         | CrossRef | CAS |

[5]  M. Han, G. W. Choi, Y. Kim, B. Koo, Bioresources 2011, 6, 1939.
         | CAS |

[6]  D. R. Keshwani, J. J. Cheng, Bioresource Technol. 2009, 100, 1515.
         | CrossRef | CAS |

[7]  P. Kumar, D. M. Barrett, M. J. Delwiche, P. Stroeve, Ind. Eng. Chem. Res. 2009, 48, 3713.
         | CrossRef | CAS |

[8]  T. Eggeman, R. T. Elander, Bioresource Technol. 2005, 96, 2019.
         | CrossRef | CAS |

[9]  M. Simon, C. Vanderghem, Y. Brostaux, B. Jourez, M. Paquot, A. Richel, J. Chem. Technol. Biotechnol. 2013, in press.
         | CrossRef |

[10]  K. B. H. Finch, R. M. Richards, A. Richel, A. V. Medvedovici, N. G. Gheorghe, M. Verziu, S. M. Coman, V. I. Parvulescu, Catal. Today 2012, 196, 3.
         | CrossRef | CAS |

[11]  P. Manara, A. Zabaniotou, C. Vanderghem, A. Richel, Catal. Today 2014, 223, 25.
         | CrossRef | CAS |

[12]  C. Vanderghem, A. Richel, N. Jacquet, C. Blecker, M. Paquot, Polym. Degrad. Stabil. 2011, 96, 1761.
         | CrossRef | CAS |

[13]  A. B. Blakeney, P. J. Harris, R. J. Henry, B. A. Stone, Carbohydr. Res. 1983, 113, 291.
         | CrossRef | CAS |

[14]  D. Amendola, D. M. De Faveri, G. Spigno, J. Food Eng. 2010, 97, 384.
         | CrossRef | CAS |

[15]  A. L. Waterhouse, Curr. Protoc. Food Anal. Chem. 2002, I1.1.1.

[16]  C. Sánchez-Moreno, J. A. Larrauri, F. Saura-Calixto, J. Sci. Food Agric. 1998, 76, 270.
         | CrossRef |

[17]  T. Dizhbite, G. Telysheva, V. Jurkane, U. Viesturs, Bioresource Technol. 2004, 95, 309.
         | CrossRef | CAS |

[18]  R. Bhat, H. P. S. A. Khalil, A. A. Karim, C. R. Biol. 2009, 332, 827.
         | CrossRef | CAS | PubMed |

[19]  I. Parejo, F. Viladomat, J. Bastida, A. Rosas-Romero, N. Flerlage, J. Burillo, C. Codina, J. Agric. Food Chem. 2002, 50, 6882.
         | CrossRef | CAS | PubMed |

[20]  A. García, A. Toledano, M. A. Andrés, J. Labidi, Process Biochem. 2010, 45, 935.
         | CrossRef |

[21]  C. G. Boeriu, D. Bravo, R. J. A. Gosselink, J. E. G. van Dam, Ind. Crops Prod. 2004, 20, 205.
         | CrossRef | CAS |

[22]  X. J. Pan, K. Ehara, J. Kadla, N. Gilkes, J. Saddler, J. Agric. Food Chem. 2006, 54, 5806.
         | CrossRef | CAS |


   
Subscriber Login
Username:
Password:  

 


    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2015