CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Environmental Chemistry   
Environmental Chemistry
Journal Banner
  Environmental problems - Chemical approaches
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Boards
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

 

Article << Previous     |     Next >>   Contents Vol 10(3)

Modelling of secondary organic aerosol formation from isoprene photooxidation chamber studies using different approaches

Haofei Zhang A B C , Harshal M. Parikh A , Jyoti Bapat A , Ying-Hsuan Lin A , Jason D. Surratt A and Richard M. Kamens A

A Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
B Present address: Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
C Corresponding author. Email: hfzhang@lbl.gov; unobaggio@gmail.com

Environmental Chemistry 10(3) 194-209 http://dx.doi.org/10.1071/EN13029
Submitted: 5 February 2013  Accepted: 4 May 2013   Published: 19 June 2013


 
PDF (744 KB) $25
 Supplementary Material
 Export Citation
 Print
  

Environmental context. Fine particulate matter (PM2.5) in the Earth’s atmosphere plays an important role in climate change and human health, in which secondary organic aerosol (SOA) that forms from the photooxidation of volatile organic compounds (VOCs) has a significant contribution. SOA derived from isoprene, the most abundant non-methane VOC emitted into the Earth’s atmosphere, has been widely studied to interpret its formation mechanisms. However, the ability to predict isoprene SOA using current models remains difficult due to the lack of understanding of isoprene chemistry.

Abstract. Secondary organic aerosol (SOA) formation from the photooxidation of isoprene was simulated against smog chamber experiments with varied concentrations of isoprene, nitrogen oxides (NOx = NO + NO2) and ammonium sulfate seed aerosols. A semi-condensed gas-phase isoprene chemical mechanism (ISO-UNC) was coupled with different aerosol-phase modelling frameworks to simulate SOA formation, including: (1) the Odum two-product approach, (2) the 1-D volatility basis-set (VBS) approach and (3) a new condensed kinetic model based upon the gas-particle partitioning theory and reactive uptake processes. The first two approaches are based upon empirical parameterisations from previous studies. The kinetic model uses a gas-phase mechanism to explicitly predict the major intermediate precursors, namely the isoprene-derived epoxides, and hence simulate SOA formation. In general, they all tend to significantly over predict SOA formation when semivolatile concentrations are higher because more semivolatiles are forced to produce SOA in the models to maintain gas-particle equilibrium; yet the data indicate otherwise. Consequently, modified dynamic parameterised models, assuming non-equilibrium partitioning, were incorporated and could improve the model performance. In addition, the condensed kinetic model was expanded by including an uptake limitation representation so that reactive uptake processes slow down or even stop; this assumes reactive uptake reactions saturate seed aerosols. The results from this study suggest that isoprene SOA formation by reactive uptake of gas-phase precursors is likely limited by certain particle-phase features, and at high gas-phase epoxide levels, gas-particle equilibrium is not obtained. The real cause of the limitation needs further investigation; however, the modified kinetic model in this study could tentatively be incorporated in large-scale SOA models given its predictive ability.

Additional keywords: gas-particle partitioning, isoprene-derived epoxides, kinetic models, reactive uptake.


References

[1]  J. L. Jimenez, M. R. Canagaratna, N. M. Donahue, A. S. H. Prevot, Q. Zhang, J. H. Kroll, P. F. DeCarlo, J. D. Allan, H. Coe, N. L. Ng, A. C. Aiken, K. S. Docherty, I. M. Ulbrich, A. P. Grieshop, A. L. Robinson, J. Duplissy, J. D. Smith, K. R. Wilson, V. A. Lanz, C. Hueglin, Y. L. Sun, J. Tian, A. Laaksonen, T. Raatikainen, J. Rautiainen, P. Vaattovaara, M. Ehn, M. Kulmala, J. M. Tomlinson, D. R. Collins, M. J. Cubison, E. J. Dunlea, J. A. Huffman, T. B. Onasch, M. R. Alfarra, P. I. Williams, K. Bower, Y. Kondo, J. Schneider, F. Drewnick, S. Borrmann, S. Weimer, K. Demerjian, D. Salcedo, L. Cottrell, R. Griffin, A. Takami, T. Miyoshi, S. Hatakeyama, A. Shimono, J. Y. Sun, Y. M. Zhang, K. Szepina, J. R. Kimmel, D. Sueper, J. T. Jayne, S. C. Herndon, A. M. Trimborn, L. R. Williams, E. C. Wood, A. M. Middlebrook, C. E. Kolb, U. Baltensperger, D. R. Worsnop, Evolution of organic aerosols in the atmosphere. Science 2009, 326, 1525.
CrossRef | CAS | PubMed |

[2]  J. H. Kroll, N. M. Donahue, J. L. Jimenez, S. H. Kessler, M. R. Canagaratna, K. R. Wilson, K. E. Altieri, L. R. Mazzoleni, A. S. Wozniak, H. Bluhm, E. R. Mysak, J. D. Smith, C. E. Kolb, D. R. Worsnop, Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol. Nat. Chem. 2011, 3, 133.
CrossRef | CAS | PubMed |

[3]  A. Guenther, T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, C. Geron, Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181.
CrossRef | CAS |

[4]  D. K. Henze, J. H. Seinfeld, Global secondary organic aerosol from isoprene oxidation. Geophys. Res. Lett. 2006, 33, L09812.
CrossRef |

[5]  A. G. Carlton, C. Wiedinmyer, J. H. Kroll, A review of secondary organic aerosol (SOA) formation from isoprene. Atmos. Chem. Phys. 2009, 9, 4987.
CrossRef | CAS |

[6]  F. Paulot, J. D. Crounse, H. G. Kjaergaard, A. Kürten, J. M. St. Clair, J. H. Seinfeld, P. O. Wennberg, Unexpected eposide formation in the gas-phase photooxidation of isoprene. Science 2009, 325, 730.
CrossRef | CAS | PubMed |

[7]  J. D. Surratt, A. W. H. Chan, N. C. Eddingsaas, M. Chan, C. L. Loza, A. J. Kwan, S. P. Hersey, R. C. Flagan, P. O. Wennberg, J. H. Seinfeld, Reactive intermediates revealed in secondary organic aerosol formation from isoprene. Proc. Natl. Acad. Sci. USA 2010, 107, 6640.
CrossRef | CAS | PubMed |

[8]  Y.-H. Lin, H. Zhang, H. O. T. Pye, Z. Zhang, W. J. Marth, S. Park, M. Arashiro, T. Cui, S. H. Budisulistiorini, K. G. Sexton, W. Vizuete, Y. Xie, D. J. Luecken, I. R. Piletic, E. O. Edney, L. J. Bartolotti, A. Gold, J. D. Surratt, Epoxide key to secondary organic aerosol formation from the photooxidation of isoprene in the presence of nitrogen oxides. Proc. Natl. Acad. Sci. USA 2013, 110, 6718.
CrossRef | CAS | PubMed |

[9]  Y.-H. Lin, Z. Zhang, K. S. Docherty, H. Zhang, S. H. Budisulistiorini, C. L. Rubitschun, S. L. Shaw, E. M. Knipping, E. S. Edgerton, T. E. Kleindienst, A. Gold, J. D. Surratt, Isoprene epoxydiols as precursors to secondary organic aerosol formation: acid-catalyzed reactive uptake studies with authentic compounds. Environ. Sci. Technol. 2012, 46, 250.
CrossRef | CAS | PubMed |

[10]  M. Claeys, B. Graham, G. Vas, W. Wang, R. Vermeylen, V. Pashynska, J. Cafmeyer, P. Guyon, M. O. Andreae, P. Artaxo, W. Maenhaut, Formation of secondary organic aerosols through photooxidation of isoprene. Science 2004, 303, 1173.
CrossRef | CAS | PubMed |

[11]  W. Wang, I. Kourtchev, B. Graham, J. Cafmeyer, W. Maenhaut, M. Claeys, Characterization of oxygenated derivatives of isoprene related to 2-methyltetrols in Amazonian aerosols using trimethylsilylation and gas chromatography/ion trap mass spectrometry. Rapid Commun. Mass Spectrom. 2005, 19, 1343.
CrossRef | CAS | PubMed |

[12]  Z. Zhang, Y.-H. Lin, H. Zhang, J. D. Surratt, L. M. Ball, A. Gold, Technical note: synthesis of isoprene atmospheric oxidation products: isomeric epoxydiols and the rearrangement products cis- and trans- 3methyl-3,4-dihydroxytetrahydrofuran. Atmos. Chem. Phys. 2012, 12, 8529.
CrossRef | CAS |

[13]  J. D. Surratt, S. M. Murphy, J. H. Kroll, N. L. Ng, L. Hildebrabdt, A. Sorooshian, R. Szmigielski, R. Vermeylen, W. Maenhaut, M. Claeys, R. C. Flagan, J. H. Seinfeld, Chemical composition of secondary organic aerosol formed from the photooxidation of isoprene. J. Phys. Chem. A 2006, 110, 9665.
CrossRef | CAS | PubMed |

[14]  J. D. Surratt, M. Lewandowski, J. H. Offenberg, M. Jaoui, T. E. Kleindienst, E. O. Edney, J. H. Seinfeld, Effect of acidity on secondary organic aerosol formation from isoprene. Environ. Sci. Technol. 2007, 41, 5363.
CrossRef | CAS | PubMed |

[15]  K. D. Froyd, S. M. Murphy, D. M. Murphy, J. A. de Gouw, N. C. Eddingsaas, P. O. Wennberg, Contribution of isoprene-derived organosulfates to free tropospheric aerosol mass. Proc. Natl. Acad. Sci. USA 2010, 107, 21360.
CrossRef | CAS | PubMed |

[16]  J. H. Kroll, N. L. Ng, S. M. Murphy, R. C. Flagan, J. H. Seinfeld, Secondary organic aerosol formation from isoprene photooxidation. Environ. Sci. Technol. 2006, 40, 1869.
CrossRef | CAS | PubMed |

[17]  H. Zhang, J. D. Surratt, Y.-H. Lin, J. Bapat, R. M. Kamens, Effect of relative humidity on SOA formation from isoprene/NO photooxidation: enhancement of 2-methylglyceric acid and its corresponding oligoesters under dry conditions. Atmos. Chem. Phys. 2011, 11, 6411.
CrossRef | CAS |

[18]  H. Zhang, Y.-H. Lin, Z. Zhang, X. Zhang, S. L. Shaw, E. M. Knipping, R. Weber, A. Gold, R. M. Kamens, J. D. Surratt, Secondary organic aerosol formation from methacrolein photooxidation: roles of NOx level, relative humidity, and aerosol acidity. Environ. Chem. 2012, 9, 247.
CrossRef |

[19]  A. W. H. Chan, M. N. Chan, J. D. Surratt, P. S. Chhabra, C. L. Loza, J. D. Crounse, L. D. Yee, R. C. Flagan, P. O. Wennberg, J. H. Seinfeld, Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation. Atmos. Chem. Phys. 2010, 10, 7169.
CrossRef | CAS |

[20]  E. O. Edney, T. E. Kleindienst, M. Jaoui, M. Lewandowski, J. H. Offenberg, W. Wang, M. Claeys, Formation of 2-methyl tetrols and 2-methylglyceric acid in secondary organic aerosol from laboratory irradiated isoprene/NOx/SO2/air mixtures and their detection in ambient PM2.5 samples collected in the eastern United States. Atmos. Environ. 2005, 39, 5281.
CrossRef | CAS |

[21]  J. Liggio, S. M. Li, R. Mclaren, Reactive uptake of glyoxal by particulate matter. J. Geophys. Res. 2005, 110, D10304.
CrossRef |

[22]  J. H. Kroll, N. L. Ng, S. M. Murphy, V. Varutbangkul, R. C. Flagan, J. H. Seinfeld, Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds. J. Geophys. Res. 2005, 110, D23207.
CrossRef |

[23]  R. Volkamer, F. S. Martini, L. T. Molina, D. Salcedo, J. L. Jimenez, M. J. Molina, A missing sink for gas-phase glyoxal in Mexico City: formation of secondary organic aerosol. Geophys. Res. Lett. 2007, 34, L19807.
CrossRef |

[24]  A. G. Carlton, B. J. Turpin, K. E. Altieri, A. Reff, S. P. Seitzinger, H. Lim, B. Ervens, Atmospheric oxalic acid and SOA production from glyoxal: results of aqueous photooxidation experiments. Atmos. Environ. 2007, 41, 7588.
CrossRef | CAS |

[25]  K. E. Altieri, S. P. Seitzinger, A. G. Carlton, B. J. Turpin, G. C. Klein, A. G. Marshall, Oligomers formed through in-cloud methylglyoxal reactions: chemical composition, properties, and mechanisms investigated by ultra-high resolutio FT-ICR mass spectrometry. Atmos. Environ. 2008, 42, 1476.
CrossRef | CAS |

[26]  B. Ervens, R. Volkamer, Glyoxal processing by aerosol multiphase chemistry: towards a kinetics modeling framework of secondary organic aerosol formation in aqueous particles. Atmos. Chem. Phys. 2010, 10, 8219.
CrossRef | CAS |

[27]  R. M. Kamens, H. Zhang, E. H. Chen, Y. Zhou, H. M. Parikh, R. L. Wilson, K. E. Galloway, E. P. Rosen, Secondary organic aerosol formation from toluene in an atmospheric hydrocarbon mixture: water and particle seed effects. Atmos. Environ. 2011, 45, 2324.
CrossRef | CAS |

[28]  Y. Zhou, H. Zhang, H. M. Parikh, E. H. Chen, W. Rattanavaraha, E. P. Rosen, W. Wang, R. M. Kamens, Secondary organic aerosol formation from xylenes and mixtures of toluene and xylenes in an atmospheric urban hydrocarbon mixture: water and particle seed effects (II). Atmos. Environ. 2011, 45, 3882.
CrossRef | CAS |

[29]  J. R. Odum, T. Hoffmann, F. Bowman, D. Collins, R. C. Flagan, J. H. Seinfeld, Gas/particle partitioning and secondary organic aerosol yields. Environ. Sci. Technol. 1996, 30, 2580.
CrossRef | CAS |

[30]  N. M. Donahue, A. L. Robinson, C. O. Stanier, S. N. Pandis, Coupled partitioning, dilution, and chemical aging of semivolatile organics. Environ. Sci. Technol. 2006, 40, 2635.
CrossRef | CAS | PubMed |

[31]  N. M. Donahue, S. A. Epstein, S. N. Pandis, A. L. Robinson, A two-dimensional volatility basis set: 1. Organic-aerosol mixing thermodynamics. Atmos. Chem. Phys. 2011, 11, 3303.
CrossRef | CAS |

[32]  N. M. Donahue, J. H. Kroll, S. N. Pandis, A. L. Robinson, A two-dimensional volatility basis set – Part 2. Diagnostics of organic-aerosol evolution. Atmos. Chem. Phys. 2012, 12, 615.
CrossRef | CAS |

[33]  J. F. Pankow, K. C. Barsanti, The carbon number-polarity grid: a means to manage the complexity of the mix of organic compounds when modeling atmospehric organic particulate matter. Atmos. Environ. 2009, 43, 2829.
CrossRef | CAS |

[34]  C. D. Cappa, K. R. Wilson, Multi-generation gas-phase oxidation, equilibrium partitioning, and the formation and evolution of secondary organic aerosol. Atmos. Chem. Phys. 2012, 12, 9505.
CrossRef | CAS |

[35]  M. N. Chan, A. W. H. Chan, P. S. Chhabra, J. D. Surratt, J. H. Seinfeld, Modeling of secondary organic aerosol yields from laboratory chamber data. Atmos. Chem. Phys. 2009, 9, 5669.
CrossRef | CAS |

[36]  N. M. Donahue, K. M. Henry, T. F. Mentel, A. Kiendler-Scharr, C. Spindler, B. Bohn, T. Brauers, H. P. Dorn, H. Fuchs, R. Tillmann, A. Wahner, H. Saathoff, K.-H. Naumann, O. Möhler, T. Leisner, L. Müller, M.-C. Reinnig, T. Hoffmann, K. Salo, M. Hallquist, M. Frosch, M. Bilde, T. Tritscher, P. Barmet, A. P. Praplan, P. F. DeCarlo, J. Dommen, A. S. H. Prévôt, U. Baltensperger, Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions. Proc. Natl. Acad. Sci. USA 2012, 109, 13503.
CrossRef | CAS | PubMed |

[37]  H. Zhang, W. Rattanavaraha, Y. Zhou, J. Bapat, E. P. Rosen, R. M. Kamens, A new gas-phase condensed mechanism of isoprene-NOx photooxidation. Atmos. Environ. 2011, 45, 4507.
CrossRef | CAS |

[38]  H. Zhang, R. M. Kamens, The influence of isoprene peroxy radical isomerization mechanisms on ozone simulation with the presence of NOx. J. Atmos. Chem. 2012, 69, 67.
CrossRef | CAS |

[39]  S. Lee, M. Jang, R. M. Kamens, SOA formation from the photooxidation of α-pinene in the presence of freshly emitted diesel soot exhaust. Atmos. Environ. 2004, 38, 2597.
CrossRef | CAS |

[40]  S. Leungsakul, H. E. Jeffries, R. M. Kamens, A kinetic mechanism for predicting secondary aerosol formation from the reactions of d-limonene in the presence of oxides of nitrogen and natural sunlight. Atmos. Environ. 2005, 39, 7063.
CrossRef | CAS |

[41]  D. Hu, M. Tolocka, Q. Li, R. M. Kamens, A kinetic mechanism for predicting secondary aerosol formation from toluene oxidation in the presence of NOx and natural sunlight. Atmos. Environ. 2007, 41, 6478.
CrossRef | CAS |

[42]  T. E. Lane, N. M. Donahue, S. P. Pandis, Simulating secondary organic aerosol formation using the volatility basis-set approach in a chemical transport model. Atmos. Environ. 2008, 42, 7439.
CrossRef | CAS |

[43]  T. E. Lane, N. M. Donahue, S. P. Pandis, Effect of NOx on secondary organic aerosol concentrations. Environ. Sci. Technol. 2008, 42, 6022.
CrossRef | CAS | PubMed |

[44]  H. M. Parikh, A. G. Carlton, W. Vizuete, R. M. Kamens, Modeling secondary organic aerosol using a dynamic partitioning approach incorporating particle aqueous-phase chemistry. Atmos. Environ. 2011, 45, 1126.
CrossRef | CAS |

[45]  H. M. Parikh, A. G. Carlton, Y. Zhou, H. Zhang, R. M. Kamens, W. Vizuete, Modeling secondary organic aerosol from xylene and aromatic mixtures using a dynamic partitioning approach incorporating particle aqueous-phase chemistry (II). Atmos. Environ. 2012, 56, 250.
CrossRef | CAS |

[46]  V. Perraud, E. A. Bruns, M. J. Ezell, S. N. Johnson, Y. Yu, M. L. Alexander, A. Zelenyuk, D. Imre, W. L. Chang, D. Dabdub, J. F. Pankow, B. J. Finlayson-Pitts, Nonequilibrium atmospheric secondary organic aerosol formation and growth. Proc. Natl. Acad. Sci. USA 2012, 109, 2836.
CrossRef | CAS | PubMed |

[47]  B. Koo, A. S. Ansari, S. N. Pandis, Integrated approaches to modeling the organic and inorganic atmospheric aerosol components. Atmos. Environ. 2003, 37, 4757.
CrossRef | CAS |

[48]  A. P. Tsimpidi, V. A. Karydis, M. Zavala, W. Lei, I. Molina, I. M. Ulbrich, J. L. Jimenez, S. N. Pandis, Evaluation of the volatility basis-set approach for the simulation of organic aerosol formation in the Mexico City metropolitan area. Atmos. Chem. Phys. 2010, 10, 525.
CrossRef | CAS |

[49]  A. G. Carlton, P. V. Bhave, S. L. Napelenok, E. O. Edney, G. Sarwar, R. W. Pinder, G. A. Pouliot, M. Houyoux, Model representation of secondary organic aerosol in CMAQv4.7. Environ. Sci. Technol. 2010, 44, 8553.
CrossRef | CAS | PubMed |

[50]  H. E. Jeffries, M. W. Gary, M. Kessler, K. G. Sexton, Morphecule reaction mechanism, MORPHO, ALLOMORPHIC simulation software. Technical Report CR813107, CR813964 and CR815779 1998, (University of North Carolina: Chapel Hill, NC).

[51]  W. P. L. Carter, Development of the SAPRC-07 chemical mechanism. Atmos. Environ. 2010, 44, 5324.
CrossRef | CAS |

[52]  Y. Xie, F. Paulot, W. P. L. Carter, C. G. Nolte, D. J. Luecken, W. T. Hutzell, P. O. Wennberg, R. C. Cohen, R. W. Pinder, Understanding the impact of recent advances in isoprene photooxidation on simulations of regional air quality. Atmos. Chem. Phys. Discuss. 2012, 12, 27173.
CrossRef |

[53]  J. F. Pankow, An absorption model of gas-particle partitioning of organic compounds in the atmosphere. Atmos. Environ. 1994, 28, 185.
CrossRef | CAS |

[54]  J. F. Pankow, W. E. Asher, SIMPOL.1: a simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds. Atmos. Chem. Phys. 2008, 8, 2773.
CrossRef | CAS |

[55]  M. N. Chan, J. D. Surratt, M. Claeys, E. S. Edgerton, R. L. Tanner, S. L. Shaw, M. Zhang, E. M. Knipping, N. C. Eddingsaas, P. O. Wennberg, J. H. Seinfeld, Characterization and quantification of isoprene-derived epoxydiols in ambient aerosol in the southeastern United States. Environ. Sci. Technol. 2010, 44, 4590.
CrossRef | CAS | PubMed |

[56]  R. M. Kamens, M. Jang, C.-J. Chien, K. Leach, Aerosol formatin from the reaction of α-pinene and ozone using a gas-phase kinetics-aerosol partitioning model. Environ. Sci. Technol. 1999, 33, 1430.
CrossRef | CAS |

[57]  T. B. Nguyen, P. J. Roach, J. Laskin, A. Laskin, S. A. Nizkorodov, Effect of humidity on the composition and yield of isoprene photooxidation secondary organic aerosol. Atmos. Chem. Phys. 2011, 11, 6931.
CrossRef | CAS |

[58]  J. Kroll, J. Hunter, K. Daumit, S. Kessler, A. Carrasquillo, E. Cross, T. Nah, D. Worsnop, K. R. Wilson, Kinetics and products of multiphase aging reactions of organic aerosol, in 31th American Association for Aerosol Research (AAAR) Annual Conference, 8–12 October 2012, Minneapolis, MN 2012, paper 12AC.1 (American Association for Aerosol Research: Mount Laurel, NJ). Available at http://aaarabstracts.com/2012/AbstractBook.pdf [Verified 12 June 2013].

[59]  V. F. McNeill, J. L. Woo, D. D. Kim, A. N. Schwier, N. J. Wannell, A. J. Sumner, J. M. Barakat, Aqueous-phase secondary organic aerosol and organosulfate formation in atmospheric aerosols: a modeling study. Environ. Sci. Technol. 2012, 46, 8075.
CrossRef | CAS | PubMed |

[60]  B. Ervens, B. J. Turpin, R. J. Weber, Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies. Atmos. Chem. Phys. 2011, 11, 11069.
CrossRef | CAS |

[61]  B. J. Turpin, Y. B. Lim, D. Ortiz-Montalvo, A. Schwier, V. F. McNeill, SOA formation through aqueous chemistry: volatility and yields, 31th American Association for Aerosol Research (AAAR) Annual Conference, 8–12 October 2012, Minneapolis, MN 2012, paper 6AC.4 (American Association for Aerosol Research: Mount Laurel, NJ). Available at http://aaarabstracts.com/2012/AbstractBook.pdf [Verified 12 June 2013].

[62]  R. V. Martin, D. J. Jacob, R. M. Yantosca, M. Chin, P. Ginoux, Global and regional decreases in tropospheric oxidants from photochemical effects of aerosols. J. Geophys. Res. 2003, 108, 4097.
CrossRef |

[63]  T. M. Fu, D. J. Jacob, F. Wittrock, J. P. Burrows, M. Vrekoussis, D. K. Henze, Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols. J. Geophys. Res. 2008, 113, D15303.
CrossRef |

[64]  R. Volkamer, P. J. Ziemann, M. J. Molina, Secondary organic aerosol formation from acetylene (C2H2): seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase. Atmos. Chem. Phys. 2009, 9, 1907.
CrossRef | CAS |

[65]  N. C. Eddingsaas, D. G. VanderVelde, P. O. Wennberg, Kinetics and products of the acid-catalyzed ring-opening of atmospherically relevant butyl epoxy alcohols. J. Phys. Chem. A 2010, 114, 8106.
CrossRef | CAS | PubMed |

[66]  S. L. Clegg, P. Brimblecombe, A. S. Wexler, A thermodynamic model of the system H+-NH4+-SO42–-NO3-H2O at tropospheric temperatures. J. Phys. Chem. A 1998, 102, 2155.
CrossRef | CAS |


   
Subscriber Login
Username:
Password:  

 
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014