Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Affinity of extracellular phosphatases for ELF97 phosphate in aquatic environments

Jiří Nedoma A D , France Van Wambeke B , Alena Štrojsová A C , Martina Štrojsová A C and Solange Duhamel B
+ Author Affiliations
- Author Affiliations

A Biological Centre of the Academy of Sciences of the Czech Republic, v.v.i., Hydrobiological Institute, Na sádkách 7, 37005 České Budějovice, Czech Republic.

B Laboratoire de Microbiologie Géochimie et Ecologie Marines, CNRS-UMR 6117, Campus de Luminy, case 901, 13 288 Marseille cedex 9, France.

C Faculty of Biological Sciences, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.

D Corresponding author. Email: nedoma@hbu.cas.cz

Marine and Freshwater Research 58(5) 454-460 https://doi.org/10.1071/MF06211
Submitted: 7 November 2006  Accepted: 28 February 2007   Published: 17 May 2007

Abstract

Recently, the phosphatase substrate ELF97 phosphate (ELFP) has been employed to study the presence of extracellular phosphatases in different plankton populations in natural aquatic environments. Kinetic properties of ELFP hydrolysis by natural extracellular phosphatases are, however, mostly unknown. We indirectly studied the affinity of extracellular phosphatases for ELFP in different aquatic environments through its ability to inhibit the hydrolysis of 4-methylumbelliferyl phosphate (4MUP). Values of inhibition constants, Ki, which correspond to the concentrations necessary for half saturation of phosphatases by ELFP, were lowest (0.18–4.5 µmol L–1) in the oligotrophic Mediterranean Sea. We found higher values (i.e. lower affinity) in oligo- to mesotrophic acidified lakes (5.2–14 µmol L–1), in a eutrophic reservoir (13–35 µmol L–1) and in a pure culture of the marine bacterium Alteromonas infernus (29 µmol L–1). ELFP had a pronounced effect on the parameter KM (Michaelis constant) of 4MUP saturation kinetics, while its effect on the parameter Vmax was low. This behaviour is compatible with the assumption of competitive interaction between 4MUP and ELFP. Our experiments indicated that the assay ELFP concentration in the detection kit used was 250–500 µmol L–1 (after the recommended dilution to a ratio of 1:20), which would ensure >99% saturation of extracellular phosphatases in marine environments and >90% saturation in the studied fresh waters.

Additional keywords: freshwater, marine.


Acknowledgements

This study was supported by the GA AV CR research grants A6017202 and IAA600170602, the French program PROOF-PECHE, and the PAI Barrande project 2005-06-009-1. We thank J. Vrba for useful comments on an earlier version of the manuscript.


References

Chang, Y. C. , and Prusoff, W. H. (1973). Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 percent inhibition (IC50) of an enzymatic reaction. Biochemical Pharmacology 22, 3099–3108.
Crossref | GoogleScholarGoogle Scholar | PubMed | Dixon M., and Webb E. C. (1964). ‘Enzymes.’ 2nd edn. (Longmans: London.)

Elser, J. J. , Stabler, L. B. , and Hassett, R. P. (1995). Nutrient limitation of bacterial-growth and rates of bacterivory in lakes and oceans: a comparative study. Aquatic Microbial Ecology 9, 105–110.


Gage, M. A. , and Gorham, E. (1985). Alkaline phosphatase activity and cellular phosphorus as an index of the phosphorus status of phytoplankton in Minnesota lakes. Freshwater Biology 15, 227–233.
Crossref | GoogleScholarGoogle Scholar |

González-Gil, S. , Keafer, B. A. , Jovine, R. V. M. , Aguilera, A. , Lu, S. , and Anderson, D. M. (1998). Detection and quantification of alkaline phosphatase in single cells of phosphorus-starved marine phytoplankton. Marine Ecology Progress Series 164, 21–35.


Hoppe, H. G. (1983). Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl substrates. Marine Ecology Progress Series 11, 299–308.


Hoppe, H. G. (2003). Phosphatase activity in the sea. Hydrobiologia 493, 187–200.
Crossref | GoogleScholarGoogle Scholar |

Huang, Z. , Terpetschnig, E. , You, W. , and Haugland, R. P. (1992). 2-(2'-phosphoryloxyphenyl)-4(3H)-quinazolinone derivatives as fluorogenic precipitating substrates of phosphatases. Analytical Biochemistry 207, 32–39.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Jansson, M. , Olsson, H. , and Pettersson, K. (1988). Phosphatases: origin, characteristics and function in lakes. Hydrobiologia 170, 157–175.


Jean, N. , Boge, G. , Jamet, J. L. , Richard, S. , and Jamet, D. (2003). Seasonal changes in zooplanktonic alkaline phosphatase activity in Toulon Bay (France): the role of Cypris larvae. Marine Pollution Bulletin 46, 346–352.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kopáček, J. , Hejzlar, J. , Borovec, J. , Porcal, P. , and Kotorová, I. (2000). Phosphorus inactivation by aluminium in the water column and sediments: a process lowering in-lake phosphorus availability in acidified watershed-lake ecosystems. Limnology and Oceanography 45, 212–225.


Marty, J. C. , Chiavérini, J. , Pizay, M. D. , and Avril, B. (2002). Seasonal and interannual dynamics of nutrients and phytoplankton pigments in the western Mediterranean Sea at the DYFAMED time series station (1991–1999). Deep-Sea Research. Part II, Topical Studies in Oceanography 49, 1965–1985.
Crossref | GoogleScholarGoogle Scholar |

Moutin, T. , Thingstad, T. F. , Van Wambeke, F. , Marie, D. , Slawyk, G. , Raimbault, P. , and Claustre, H. (2002). Does competition for nanomolar phosphate supply explain the predominance of the cyanobacterium Synechococcus? Limnology and Oceanography 47, 1562–1567.


Nedoma, J. , and Vrba, J. (2006). Specific activity of cell-surface acid phosphatase in different bacterioplankton morphotypes in an acidified mountain lake. Environmental Microbiology 8, 1271–1279.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Nedoma, J. , Padisák, J. , and Koschel, R. (2003a). Utilisation of 32P-labelled nucleotide- and non-nucleotide dissolved organic phosphorus by freshwater plankton. Archiv fuer Hydrobiologie 58, 87–99.


Nedoma, J. , Štrojsová, A. , Vrba, J. , Komárková, J. , and Šimek, K. (2003b). Extracellular phosphatase activity of natural plankton studied with ELF97 phosphate: fluorescence quantification and labelling kinetics. Environmental Microbiology 5, 462–472.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Rengefors, K. , Petterson, K. , Blenckner, T. , and Anderson, D. M. (2001). Species-specific alkaline phosphatase activity in freshwater spring phytoplankton: application of a novel method. Journal of Plankton Research 23, 435–443.
Crossref | GoogleScholarGoogle Scholar |

Schindler, D. W. (1977). Evolution of phosphorus limitation in lakes. Science 195, 260–262.
Crossref | GoogleScholarGoogle Scholar |

Štrojsová, A. , Vrba, J. , Nedoma, J. , Komárková, J. , and Znachor, P. (2003). Seasonal study of extracellular phosphatase expression in the phytoplankton of a eutrophic reservoir. European Journal of Phycology 38, 295–306.
Crossref | GoogleScholarGoogle Scholar |

Štrojsová, A. , Vrba, J. , Nedoma, J. , and Šimek, K. (2005). Extracellular phosphatase activity of freshwater phytoplankton exposed to different in situ phosphorus concentrations. Marine and Freshwater Research 56, 417–424.
Crossref | GoogleScholarGoogle Scholar |

Taylor, W. D. , and Lean, D. R. S. (1991). Phosphorus pool sizes and fluxes in the epilimnion of a mesotrophic lake. Canadian Journal of Fisheries and Aquatic Sciences 48, 1293–1301.


Van Wambeke, F. , Christaki, U. , Giannakourou, A. , Moutin, T. , and Souvemerzoglou, K. (2002). Longitudinal and vertical trends of bacterial limitation by phosphorus and carbon in the Mediterranean Sea. Microbial Ecology 43, 119–133.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Vrba, J. , Komárková, J. , and Vyhnálek, V. (1993). Enhanced activity of alkaline phosphatases – phytoplankton response to epilimnetic phosphorus depletion. Water Science and Technology 28, 15–24.


Vrba, J. , Vyhnálek, V. , Hejzlar, J. , and Nedoma, J. (1995). Comparison of phosphorus deficiency indices during a spring phytoplankton bloom in a eutrophic reservoir. Freshwater Biology 33, 73–81.
Crossref | GoogleScholarGoogle Scholar |

Vrba, J. , Kopáček, J. , Fott, J. , Kohout, L. , Nedbalová, L. , Pražáková, M. , Soldán, T. , and Schaumburg, J. (2003). Long-term studies (1871–2000) on acidification and recovery of lakes in the Bohemian Forest (central Europe). Science of the Total Environment 310, 73–85.
Crossref | GoogleScholarGoogle Scholar | PubMed |