Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Tasman Sea biological response to dust storm events during the austral spring of 2009

A. J. Gabric A D , R. Cropp A , G. McTainsh A , H. Butler B , B. M. Johnston C , T. O’Loingsigh A and Dien Van Tran A
+ Author Affiliations
- Author Affiliations

A Griffith School of Environment, Nathan campus, Griffith University, 170 Kessels Road, Qld 4111, Australia.

B School of Agricultural, Computational & Environmental Sciences, University of Southern Queensland, Toowoomba, Qld 4350, Australia.

C School of Natural Science, Nathan campus, Griffith University, 170 Kessels Road, Qld 4111, Australia.

D Corresponding author. Email: a.gabric@griffith.edu.au

Marine and Freshwater Research 67(8) 1090-1102 https://doi.org/10.1071/MF14321
Submitted: 12 October 2014  Accepted: 27 April 2015   Published: 1 September 2015

Abstract

During the austral spring of 2009 several significant dust storms occurred in south-east Australia including the so-called ‘Red Dawn’ event in late September. Estimates of 2.5 Mt total suspended particulate sediment lost off the Australian coast in the 3000 km long dust plume make it the largest off-continent loss of soil ever reported. Much of this material was transported over the coastline of New South Wales and into the adjacent Tasman Sea. Long-term model simulations of dust deposition over the south-west Tasman Sea suggest the amount deposited during the spring of 2009 was approximately three times the long-term monthly average. Previous satellite-based analyses of the biological response of Tasman Sea waters to dust-derived nutrients are equivocal or have observed no response. Satellite-derived surface chlorophyll concentrations in the southern Tasman during the spring of 2009 are well above the climatological mean, with positive anomalies as high as 0.5 mg m–3. Dust transport simulations indicate strong deposition to the ocean surface, which during both the ‘Red Dawn’ event and mid-October 2009 dust storm events was enhanced by heavy precipitation. Cloud processing of the dust aerosol may have enhanced iron bioavailability for phytoplankton uptake.

Additional keywords: Additional keywords: Australia, iron, nutrient, phytoplankton.


References

Ajani, P., Ingleton, T., Pritchard, T., and Armand, L. (2011). Microalgal blooms in the coastal waters of New South Wales, Australia. Proceedings of the Linnean Society of New South Wales 133, 15–31.

Alizadeh Choobari, O., Zawar-Reza, P., and Sturman, A. (2012). Atmospheric forcing of the three-dimensional distribution of dust particles over Australia: a case study. Journal of Geophysical Research – Atmospheres 117, D11206.
Atmospheric forcing of the three-dimensional distribution of dust particles over Australia: a case study.Crossref | GoogleScholarGoogle Scholar |

Anon. (1953) ‘Limits of Oceans and Seas.’ (International Hydrographic Bureau: Monaco.)

Aryal, R., Kandel, D., Acharya, D., Chong, M. N., and Beecham, S. (2012). Unusual Sydney dust storm and its mineralogical and organic characteristics. Environmental Chemistry 9, 537–546.
Unusual Sydney dust storm and its mineralogical and organic characteristics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVOqu7rK&md5=3340fc2aa7f0bd2950f7a550719b0c1aCAS |

Baker, A. R., and Croot, P. L. (2010). Atmospheric and marine controls on aerosol iron solubility in seawater. Marine Chemistry 120, 4–13.
Atmospheric and marine controls on aerosol iron solubility in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtlGltrw%3D&md5=7031326d864a07477302a2c5e6eeb4b9CAS |

Baker, A. R., and Jickells, T. D. (2006). Mineral particle size as a control on aerosol iron solubility. Geophysical Research Letters 33, L17608.
Mineral particle size as a control on aerosol iron solubility.Crossref | GoogleScholarGoogle Scholar |

Bhattachan, A., and D’Odorico, P. (2014). Can land use intensification in the Mallee, Australia increase the supply of soluble iron to the Southern Ocean? Scientific Reports 4, 6009.
Can land use intensification in the Mallee, Australia increase the supply of soluble iron to the Southern Ocean?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXksVWmu74%3D&md5=0522f8e2c0f60e466c50988ac92a6f63CAS | 25109703PubMed |

Bishop, J. K. B., Davis, R. E., and Sherman, J. T. (2002). Robotic observations of dust storm enhancement of carbon biomass in the North Pacific. Science 298, 817–821.
Robotic observations of dust storm enhancement of carbon biomass in the North Pacific.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotFSntLY%3D&md5=517a0ab17cd63ef7093d9c50efc4370eCAS |

Bowie, A. R., Lannuzel, D., Remenyi, T. A., Wagener, T., Lam, P. J., Boyd, P. W., Guieu, C., Townsend, A. T., and Trull, T. W. (2009). Biogeochemical iron budgets of the Southern Ocean south of Australia: decoupling of iron and nutrient cycles in the subantarctic zone by the summertime supply. Global Biogeochemical Cycles 23, GB4034.
Biogeochemical iron budgets of the Southern Ocean south of Australia: decoupling of iron and nutrient cycles in the subantarctic zone by the summertime supply.Crossref | GoogleScholarGoogle Scholar |

Bowie, A. R., Griffiths, F. B., Dehairs, F., and Trull, T. W. (2011). Oceanography of the subantarctic and Polar Frontal Zones south of Australia during summer: setting for the SAZ-Sense study. Deep-sea Research. Part II, Topical Studies in Oceanography 58, 2059–2070.
Oceanography of the subantarctic and Polar Frontal Zones south of Australia during summer: setting for the SAZ-Sense study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1WksbnI&md5=79551a04f7d653ba182b22d6e5e8b07dCAS |

Boyd, P. W., and Ellwood, M. J. (2010). The biogeochemical cycle of iron in the ocean. Nature Geoscience 3, 675–682.
The biogeochemical cycle of iron in the ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1ajtrbO&md5=00d5018430ec19eaab84260af693dad8CAS |

Boyd, P. W., McTainsh, G., Sherlock, V., Richardson, K., Nichol, S., Ellwood, M., and Frew, R. (2004). Episodic enhancement of phytoplankton stocks in New Zealand subantarctic waters: Contribution of atmospheric and oceanic iron supply. Global Biogeochemical Cycles 18, GB1029.
Episodic enhancement of phytoplankton stocks in New Zealand subantarctic waters: Contribution of atmospheric and oceanic iron supply.Crossref | GoogleScholarGoogle Scholar |

Breitbarth, E., Achterberg, E. P., Ardelan, M. V., Baker, A. R., Bucciarelli, E., Chever, F., Croot, P. L., Duggen, S., Gledhill, M., Hassellov, M., Hassler, C., Hoffmann, L. J., Hunter, K. A., Hutchins, D. A., Ingri, J., Jickells, T., Lohan, M. C., Nielsdottir, M. C., Sarthou, G., Schoemann, V., Trapp, J. M., Turner, D. R., and Ye, Y. (2010). Iron biogeochemistry across marine systems – progress from the past decade. Biogeosciences 7, 1075–1097.
Iron biogeochemistry across marine systems – progress from the past decade.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXms1Cnsrs%3D&md5=eb83b6c1fcaa2fc2f653a1b249af255fCAS |

Carpenter, E. J., Capone, D. G., and Rueter, J. G. (Eds) (1992) ‘Marine Pelagic Cyanobacteria: Trichodesmium and other Diazotrophs.’ (Springer Science and Business Media: Dordrecht, Netherlands.)

Condie, S. A., and Dunn, J. R. (2006). Seasonal characteristics of the surface mixed layer in the Australasian region: implications for primary production regimes and biogeography. Marine and Freshwater Research 57, 569–590.
Seasonal characteristics of the surface mixed layer in the Australasian region: implications for primary production regimes and biogeography.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovVeksr8%3D&md5=fed7a0ec478203fe663fd95cb9163ce8CAS |

Cropp, R. A., Gabric, A. J., Levasseur, M., McTainsh, G. H., Bowie, A., Hassler, C., Law, C., McGowan, H., Tindale, N., and Rossel, R. V. (2013). The likelihood of observing dust-stimulated phytoplankton growth in waters proximal to the Australian continent. Journal of Marine Systems 117, 43–52.
The likelihood of observing dust-stimulated phytoplankton growth in waters proximal to the Australian continent.Crossref | GoogleScholarGoogle Scholar |

de Baar, H. J. W., de Jong, J. T. M., Nolting, R. F., Timmermans, K. R., van Leeuwe, M. A., Bathmann, U., van der Loeff, M. R., and Sildam, J. (1999). Low dissolved Fe and the absence of diatom blooms in remote Pacific waters of the Southern Ocean. Marine Chemistry 66, 1–34.
Low dissolved Fe and the absence of diatom blooms in remote Pacific waters of the Southern Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjslKitro%3D&md5=1904d362b9f404481dff9d4f6e213c29CAS |

Ellwood, M. J., Law, C. S., Hall, J., Woodward, E. M. S., Strzepek, R., Kuparinen, J., Thompson, K., Pickmere, S., Sutton, P., and Boyd, P. W. (2013). Relationships between nutrient stocks and inventories and phytoplankton physiological status along an oligotrophic meridional transect in the Tasman Sea. Deep-sea Research. Part I, Oceanographic Research Papers 72, 102–120.
Relationships between nutrient stocks and inventories and phytoplankton physiological status along an oligotrophic meridional transect in the Tasman Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVCmu7w%3D&md5=cccf554bb55c5057ca60314ec4b87113CAS |

Everett, J. D., Baird, M. E., Oke, P. R., and Suthers, I. M. (2012). An avenue of eddies: quantifying the biophysical properties of mesoscale eddies in the Tasman Sea. Geophysical Research Letters 39, L16608.
An avenue of eddies: quantifying the biophysical properties of mesoscale eddies in the Tasman Sea.Crossref | GoogleScholarGoogle Scholar |

Gabric, A. J., Cropp, R. A., McTainsh, G. H., Johnston, B. M., Butler, H., Tilbrook, B., and Keywood, M. (2010). Australian dust storms in 2002–2003 and their impact on Southern Ocean biogeochemistry. Global Biogeochemical Cycles 24, GB2005.

Godfrey, J. S., Cresswell, G. R., Golding, T. J., and Pearce, A. F. (1980). The separation of the East Australian Current. Journal of Physical Oceanography 10, 430–440.
The separation of the East Australian Current.Crossref | GoogleScholarGoogle Scholar |

Harrison, P. J., Boyd, P. W., Varela, D. E., and Takeda, S. (1999). Comparison of factors controlling phytoplankton productivity in the NE and NW subarctic Pacific gyres. Progress in Oceanography 43, 205–234.
Comparison of factors controlling phytoplankton productivity in the NE and NW subarctic Pacific gyres.Crossref | GoogleScholarGoogle Scholar |

Hassler, C. S., Ridgway, K. R., Bowie, A. R., Butler, E. C. V., Clementson, L. A., Doblin, M. A., Davies, D. M., Law, C., Ralph, P. J., van der Merwe, P., Watson, R., and Ellwood, M. J. (2014). Primary productivity induced by iron and nitrogen in the Tasman Sea: an overview of the PINTS expedition. Marine and Freshwater Research 65, 517–537.
Primary productivity induced by iron and nitrogen in the Tasman Sea: an overview of the PINTS expedition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXovFGlt7o%3D&md5=88bc8db2f85cdfe1a053bd371e68cb0bCAS |

Hayes, D., Lyne, V., Condie, S., Griffiths, B., Pigot, S., and Hallegraeff, G. (2005) Collation and Analysis of Oceanographic Datasets for National Marine Bioregionalisation. A report to the Australian Government, National Oceans Office. CSIRO Marine Research, Hobart.

Jickells, T. D., and Spokes, L. (2001) Atmospheric iron inputs to the oceans. In ‘The Biogeochemistry of Iron in Seawater. (Eds D. R. Turner and K. Hunter.) pp. 85–122. (Wiley: Chichester, UK.)

Jickells, T. D., An, Z. S., Andersen, K. K., Baker, A. R., Bergametti, G., Brooks, N., Cao, J. J., Boyd, P. W., Duce, R. A., Hunter, K. A., Kawahata, H., Kubilay, N., laRoche, J., Liss, P. S., Mahowald, N., Prospero, J. M., Ridgwell, A. J., Tegen, I., and Torres, R. (2005). Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308, 67–71.
Global iron connections between desert dust, ocean biogeochemistry, and climate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivVaqs7w%3D&md5=fb1fc3155de194e4be9df7c52fe2cef7CAS | 15802595PubMed |

Law, C. S., Woodward, E. M. S., Ellwood, M. J., Marriner, A., Bury, S. J., and Safi, K. A. (2011). Response of surface nutrient inventories and nitrogen fixation to a tropical cyclone in the southwest Pacific. Limnology and Oceanography 56, 1372–1385.
Response of surface nutrient inventories and nitrogen fixation to a tropical cyclone in the southwest Pacific.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVCrurrI&md5=50c117aaf2bed59f5a67d1a107b9c57aCAS |

Lenes, J. M., Darrow, B. P., Cattrall, C., Heil, C. A., Callahan, M., Vargo, G. A., Byrne, R. H., Prospero, J. M., Bates, D. E., Fanning, K. A., and Walsh, J. J. (2001). Iron fertilization and the Trichodesmium response on the West Florida shelf. Limnology and Oceanography 46, 1261–1277.
Iron fertilization and the Trichodesmium response on the West Florida shelf.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsVSktLs%3D&md5=743a3586ed3207e59b1afa53d88cf760CAS |

Leslie, L. (1998) Weather forecasting models. In ‘Climate Prediction for Agricultural and Resource Management’. (Eds R. Munro and L. Leslie.) pp. 103–116. (Bureau of Resource Sciences: Canberra, ACT, Australia.)

Leys, J. F., Heidenreich, S. K., Strong, C. L., McTainsh, G. H., and Quigley, S. (2011). PM10 concentrations and mass transport during ‘Red Dawn’ – Sydney 23 September 2009. Aeolian Research 3, 327–342.
PM10 concentrations and mass transport during ‘Red Dawn’ – Sydney 23 September 2009.Crossref | GoogleScholarGoogle Scholar |

Longhurst, A. R. (2007) ‘Ecological Geography of the Sea’, 2nd edn. (Academic Press: San Diego, CA, USA.)

Lu, H., and Shao, Y. P. (2001). Toward quantitative prediction of dust storms: an integrated wind erosion modelling system and its applications. Environmental Modelling & Software 16, 233–249.
Toward quantitative prediction of dust storms: an integrated wind erosion modelling system and its applications.Crossref | GoogleScholarGoogle Scholar |

Mackie, D. S., Boyd, P. W., Hunter, K. A., and McTainsh, G. H. (2005). Simulating the cloud processing of iron in Australian dust: pH and dust concentration. Geophysical Research Letters 32, L06809.
Simulating the cloud processing of iron in Australian dust: pH and dust concentration.Crossref | GoogleScholarGoogle Scholar |

Mackie, D. S., Boyd, P. W., McTainsh, G. H., Tindale, N. W., Westberry, T. K., and Hunter, K. A. (2008). Biogeochemistry of iron in Australian dust: from eolian uplift to marine uptake. Geochemistry Geophysics Geosystems 9, Q03Q08.
Biogeochemistry of iron in Australian dust: from eolian uplift to marine uptake.Crossref | GoogleScholarGoogle Scholar |

Matear, R. J., Chamberlain, M. A., Sun, C., and Feng, M. (2013). Climate change projection of the Tasman Sea from an Eddy-resolving Ocean Model. Journal of Geophysical Research – Oceans 118, 2961–2976.
Climate change projection of the Tasman Sea from an Eddy-resolving Ocean Model.Crossref | GoogleScholarGoogle Scholar |

McTainsh, G. H., and Leys, J. F. (1993) Wind erosion. In ‘Land Degradation Processes in Australia’. (Eds G. H. McTainsh and W. C. Boughton.) pp. 188–233. (Longman Chesire: Melbourne, Vic., Australia.)

McTainsh, G. H., Lynch, A. W., and Tews, E. K. (1998). Climatic controls upon dust storm occurrence in eastern Australia. Journal of Arid Environments 39, 457–466.
Climatic controls upon dust storm occurrence in eastern Australia.Crossref | GoogleScholarGoogle Scholar |

McTainsh, G., Chan, Y. C., McGowan, H., Leys, J., and Tews, K. (2005). The 23rd October 2002 dust storm in eastern Australia: characteristics and meteorological conditions. Atmospheric Environment 39, 1227–1236.
The 23rd October 2002 dust storm in eastern Australia: characteristics and meteorological conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsVGhu78%3D&md5=396090de993924448a8ddae66398632aCAS |

McVicar, T., Walker, J., Jupp, D., Pierce, L., Byrne, G., and Dallwitz, R. (1996a) ‘Relating AVHRR Vegetation Indices to in situ Measurements of Leaf Area Index.’ (CSIRO Division of Water Resources: Canberra, ACT, Australia.)

McVicar, T. R., Walker, J., Jupp, D., Pierce, L., Byrne, G. T., and Dallwitz, R. (1996b) ‘Relating AVHRR Vegetation Indices to In Situ Measurements of Leaf Area Index.’ (CSIRO Division of Water Resources: Canberra, ACT, Australia.)

Mitchell, R. M., Campbell, S. K., and Qin, Y. (2010). Recent increase in aerosol loading over the Australian arid zone. Atmospheric Chemistry and Physics 10, 1689–1699.
Recent increase in aerosol loading over the Australian arid zone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsl2qsrY%3D&md5=57c3b16be47a2324bd22dfbab4365a53CAS |

Raupach, M. R. (1994). Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index. Boundary-Layer Meteorology 71, 211–216.
Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index.Crossref | GoogleScholarGoogle Scholar |

Ridgway, K. R. (2007). Long-term trend and decadal variability of the southward penetration of the East Australian Current. Geophysical Research Letters 34, L13613.
Long-term trend and decadal variability of the southward penetration of the East Australian Current.Crossref | GoogleScholarGoogle Scholar |

Ridgway, K. R., and Dunn, J. R. (2003). Mesoscale structure of the mean East Australian Current System and its relationship with topography. Progress in Oceanography 56, 189–222.
Mesoscale structure of the mean East Australian Current System and its relationship with topography.Crossref | GoogleScholarGoogle Scholar |

Rubin, M., Berman-Frank, I., and Shaked, Y. (2011). Dust- and mineral-iron utilization by the marine dinitrogen-fixer Trichodesmium. Nature Geoscience 4, 529–534.
Dust- and mineral-iron utilization by the marine dinitrogen-fixer Trichodesmium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFWlu70%3D&md5=29ae4913e9b425f58e4872f8bea8ea69CAS |

Shaked, Y., and Lis, H. (2012). Disassembling iron availability to phytoplankton. Frontiers in Microbiology 3, 123.
Disassembling iron availability to phytoplankton.Crossref | GoogleScholarGoogle Scholar | 22529839PubMed |

Shao, Y. P., and Leslie, L. M. (1997). Wind erosion prediction over the Australian continent. Journal of Geophysical Research – Atmospheres 102, 30091–30105.
Wind erosion prediction over the Australian continent.Crossref | GoogleScholarGoogle Scholar |

Shao, Y. P., Leys, J. F., McTainsh, G. H., and Tews, K. (2007). Numerical simulation of the October 2002 dust event in Australia. Journal of Geophysical Research – Atmospheres 112, D08207.
Numerical simulation of the October 2002 dust event in Australia.Crossref | GoogleScholarGoogle Scholar |

Shaw, E. C., Gabric, A. J., and McTainsh, G. H. (2008). Impacts of aeolian dust deposition on phytoplankton dynamics in Queensland coastal waters. Marine and Freshwater Research 59, 951–962.
Impacts of aeolian dust deposition on phytoplankton dynamics in Queensland coastal waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVChsb3L&md5=72474fad2c6fbb2320c481ad8a07c094CAS |

Shi, Z. B., Krom, M. D., Bonneville, S., Baker, A. R., Jickells, T. D., and Benning, L. G. (2009). Formation of iron nanoparticles and increase in iron reactivity in mineral dust during simulated cloud processing. Environmental Science & Technology 43, 6592–6596.
Formation of iron nanoparticles and increase in iron reactivity in mineral dust during simulated cloud processing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFWlt7w%3D&md5=f4bd0ea53bde0c300f6ec462197ebf08CAS |

Shi, Z. B., Krom, M. D., Jickells, T. D., Bonneville, S., Carslaw, K. S., Mihalopoulos, N., Baker, A. R., and Benning, L. G. (2012). Impacts on iron solubility in the mineral dust by processes in the source region and the atmosphere: a review. Aeolian Research 5, 21–42.
Impacts on iron solubility in the mineral dust by processes in the source region and the atmosphere: a review.Crossref | GoogleScholarGoogle Scholar |

Strong, C. L., Parsons, K., McTainsh, G. H., and Sheehan, A. (2011). Dust transporting wind systems in the lower Lake Eyre Basin, Australia. Aeolian Research 2, 205–214.
Dust transporting wind systems in the lower Lake Eyre Basin, Australia.Crossref | GoogleScholarGoogle Scholar |

Suthers, I. M., Everett, J. D., Roughan, M., Young, J. W., Oke, P. R., Condie, S. A., Hartog, J. R., Hobday, A. J., Thompson, P. A., Ridgway, K., Baird, M. E., Hassler, C. S., Brassington, G. B., Byrne, M., Holbrook, N. J., and Malcolm, H. A. (2011). The strengthening East Australian Current, its eddies and biological effects – an introduction and overview. Deep-sea Research. Part II, Topical Studies in Oceanography 58, 538–546.
The strengthening East Australian Current, its eddies and biological effects – an introduction and overview.Crossref | GoogleScholarGoogle Scholar |

Thompson, P. A., Baird, M. E., Ingleton, T., and Doblin, M. A. (2009). Long-term changes in temperate Australian coastal waters: implications for phytoplankton. Marine Ecology Progress Series 394, 1–19.
Long-term changes in temperate Australian coastal waters: implications for phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVOmtA%3D%3D&md5=a2b3696e918a45f3b76a8a4040b5e5e5CAS |

Tilburg, C. E., Subrahmanyam, B., and O’Brien, J. J. (2002). Ocean color variability in the Tasman Sea. Geophysical Research Letters 29, 125-1–125-4.
Ocean color variability in the Tasman Sea.Crossref | GoogleScholarGoogle Scholar |

Timmermans, K. R., van der Wagt, B., and de Baar, H. J. W. (2004). Growth rates, half-saturation constants, and silicate, nitrate, and phosphate depletion in relation to iron availability of four large, open-ocean diatoms from the Southern Ocean. Limnology and Oceanography 49, 2141–2151.
Growth rates, half-saturation constants, and silicate, nitrate, and phosphate depletion in relation to iron availability of four large, open-ocean diatoms from the Southern Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFWqtLfN&md5=08773ad2343961e0e569bc8775102578CAS |

Zhang, T. R., Shi, J. H., Gao, H. W., Zhang, J., and Yao, X. H. (2013). Impact of source and atmospheric processing on Fe solubility in aerosols over the Yellow Sea, China. Atmospheric Environment 75, 249–256.
Impact of source and atmospheric processing on Fe solubility in aerosols over the Yellow Sea, China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptVCqurY%3D&md5=b9adc33f73ecd0d9fed0b7ec2f86b0aeCAS |