CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Reproduction, Fertility and Development   
Reproduction, Fertility and Development
Journal Banner
  Vertebrate Reproductive Science & Technology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Instructions to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our email Early Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow Connect with SRB
blank image
facebook TwitterIcon

Affiliated Societies

RFD is the official journal of the International Embryo Transfer Society and the Society for Reproductive Biology.


 

Article << Previous     |     Next >>        Online Early    

Differential gene-expression profiles from canine cumulus cells of ovulated versus in vitro-matured oocytes

Su-Jin Cho A B E , Kyeong-Lim Lee A , Yu-Gon Kim A , Dong-Hoon Kim C , Jae-Gyu Yoo D , Byoung-Chul Yang C , Jin-Ki Park C and Il-Keun Kong A B F

A Department of Animal Science, Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Gyeongsangnam-Do, Republic of Korea.
B Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 660-701, Gyeongsangnam-Do, Republic of Korea.
C Animal Biotechnology Division, National Institute of Animal Science, Suwon 441-706, Gyeonggi-Do, Republic of Korea.
D Dairy Science Division, National Institute of Animal Science, Cheonan 331-801, Chungcheongnam-Do, Republic of Korea.
E Present address: Department of Infertility Institute Clinical Laboratory, Saewha Hospital, Busan 607-843, Republic of Korea.
F Corresponding author. Email: ikong7900@gmail.com

Reproduction, Fertility and Development - http://dx.doi.org/10.1071/RD14086
Submitted: 10 March 2014  Accepted: 18 May 2014   Published online: 9 July 2014


 
PDF (488 KB) $25
 Supplementary Material
 Export Citation
 Print
  
Abstract

We compared the nuclear maturation status and gene-expression profiles of canine cumulus cells (CCs) derived from cumulus–oocyte complexes (COCs) that were spontaneously ovulated versus those that were matured in vitro. Cumulus–oocyte complexes were retrieved from uteri by surgical flushing (after spontaneous ovulation) or by ovariectomy follicle aspiration and in vitro maturation. The objective of Experiment 1 was to investigate the nuclear maturation status of in vivo- versus in vitro-matured oocytes. The objective of Experiment 2 was to compare gene-expression profiles of CCs derived from in vivo- versus in vitro-matured COCs. Genes analysed are related to cell maturation, development and apoptosis, including GDF9, MAPK1, PTX3, CX43, Bcl2 and BAX; mRNA expression for all of these genes, except for GDF9, differed (P < 0.05) between in vivo- and in vitro-matured CCs. In conclusion, we found that gene-expression profiles are related to the quality of CCs and therefore posit that monitoring gene expression could be a useful strategy to guide attempts to improve in vitro culture systems.

Additional keywords: development, dog, in vitro maturation, oogenesis, reproduction.


References

Adhikari, D., Liu, K., and Shen, Y. (2012). Cdk1 drives meiosis and mitosis through two different mechanisms. Cell Cycle 11, 2763–2764.
CrossRef | CAS | PubMed |

Adriaenssens, T., Segers, I., Wathlet, S., and Smitz, J. (2011). The cumulus cell gene-expression profile of oocytes with different nuclear maturity and potential for blastocyst formation. J. Assist. Reprod. Genet. 28, 31–40.
CrossRef | PubMed |

Albertini, D. F., Combelles, C. M., Benecchi, E., and Carabatsos, M. J. (2001). Cellular basis for paracrine regulation of ovarian follicle development. Reproduction 121, 647–653.
CrossRef | CAS | PubMed |

Apparicio, M., Alves, A. E., Pires-Butler, E. A., Ribeiro, A. P., Covizzi, G. J., and Vicente, W. R. (2011). Effects of hormonal supplementation on nuclear maturation and cortical granule distribution of canine oocytes during various reproductive stages. Reprod. Domest. Anim. 46, 896–903.
CrossRef | CAS | PubMed |

Assou, S., Anahory, T., Pantesco, V., Le Carrour, T., Pellestor, F., Klein, B., Reyftmann, L., Dechaud, H., De Vos, J., and Hamamah, S. (2006). The human cumulus–oocyte complex gene-expression profile. Hum. Reprod. 21, 1705–1719.
CrossRef | CAS | PubMed |

Bukowska, D., Kempisty, B., Piotrowska, H., Zawierucha, P., Brussow, K. P., Jaskowski, J. M., and Nowicki, M. (2012). The in vitro culture supplements and selected aspects of canine oocytes maturation. Pol. J. Vet. Sci. 15, 199–205.
CrossRef | CAS | PubMed |

Conti, M. (2002). Specificity of the cyclic adenosine 3′,5′-monophosphate signal in granulosa cell function. Biol. Reprod. 67, 1653–1661.
CrossRef | CAS | PubMed |

D’Alessandris, C., Canipari, R., Di Giacomo, M., Epifano, O., Camaioni, A., Siracusa, G., and Salustri, A. (2001). Control of mouse cumulus cell–oocyte complex integrity before and after ovulation: plasminogen activator synthesis and matrix degradation. Endocrinology 142, 3033–3040.
CrossRef | CAS | PubMed |

Deb, G. K., Dey, S. R., Bang, J. I., Cho, S. J., Park, H. C., Lee, J. G., and Kong, I. K. (2011). 9-Cis retinoic acid improves developmental competence and embryo quality during in vitro maturation of bovine oocytes through the inhibition of oocyte tumour necrosis factor-alpha gene expression. J. Anim. Sci. 89, 2759–2767.
CrossRef | CAS | PubMed |

De los Reyes, M., Palomino, J., Parraguez, V. H., Hidalgo, M., and Saffie, P. (2011). Mitochondrial distribution and meiotic progression in canine oocytes during in vivo and in vitro maturation. Theriogenology 75, 346–353.
CrossRef | CAS | PubMed |

De los Reyes, M., Palomino, J., Jofré, S., Villarroel, A., and Moreno, R. (2012). Golgi apparatus and endoplasmic reticulum dynamic during meiotic development in canine oocytes. Reprod. Domest. Anim. 47, 93–97.
CrossRef | PubMed |

De los Reyes, M., Rojas, C., Parraguez, V. H., and Palomino, J. (2013). Expression of growth differentiation factor 9 (GDF-9) during in vitro maturation in canine oocytes. Theriogenology 80, 587–596.
CrossRef | CAS | PubMed |

Dragovic, R. A., Ritter, L. J., Schulz, S. J., Amato, F., Armstrong, D. T., and Gilchrist, R. B. (2005). Role of oocyte-secreted growth differentiation factor 9 in the regulation of mouse cumulus expansion. Endocrinology 146, 2798–2806.
CrossRef | CAS | PubMed |

Edry, I., Sela-Abramovich, S., and Dekel, N. (2006). Meiotic arrest of oocytes depends on cell-to-cell communication in the ovarian follicle. Mol. Cell. Endocrinol. 252, 102–106.
CrossRef | CAS | PubMed |

Edwards, R. G. (1965). Maturation in vitro of mouse, sheep, cow, pig, rhesus monkey and human ovarian oocytes. Nature 208, 349–351.
CrossRef | CAS | PubMed |

Elvin, J. A., Clark, A. T., Wang, P., Wolfman, N. M., and Matzuk, M. M. (1999). Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Mol. Endocrinol. 13, 1035–1048.
CrossRef | CAS | PubMed |

Eppig, J. J., Schultz, R. M., O’Brien, M., and Chesnel, F. (1994). Relationship between the developmental programs controlling nuclear and cytoplasmic maturation of mouse oocytes. Dev. Biol. 164, 1–9.
CrossRef | CAS | PubMed |

Fauser, B. C., Diedrich, K., Bouchard, P., Dominguez, F., Matzuk, M., Franks, S., Hamamah, S., Simon, C., Devroey, P., Ezcurra, D., and Howles, C. M. (2011). Contemporary genetic technologies and female reproduction. Evian Annual Reproduction (EVAR) Workshop Group 2010 Hum. Reprod. Update 17, 829–847.
| CAS | PubMed |

Feuerstein, P., Cadoret, V., Dalbies-Tran, R., Guerif, F., Bidault, R., and Royere, D. (2007). Gene expression in human cumulus cells: one approach to oocyte competence. Hum. Reprod. 22, 3069–3077.
CrossRef | CAS | PubMed |

Gershon, E., Plaks, V., and Dekel, N. (2008). Gap junctions in the ovary: expression, localisation and function. Mol. Cell. Endocrinol. 282, 18–25.
CrossRef | CAS | PubMed |

Gilchrist, R. B. (2011). Recent insights into oocyte–follicle cell interactions provide opportunities for the development of new approaches to in vitro maturation. Reprod. Fertil. Dev. 23, 23–31.
CrossRef | PubMed |

Gilchrist, R. B., Ritter, L. J., and Armstrong, D. T. (2004). Oocyte–somatic cell interactions during follicle development in mammals. Anim. Reprod. Sci. 82-83, 431–446.
CrossRef | CAS | PubMed |

Gilchrist, R. B., Ritter, L. J., Myllymaa, S., Kaivo-Oja, N., Dragovic, R. A., Hickey, T. E., Ritvos, O., and Mottershead, D. G. (2006). Molecular basis of oocyte paracrine signalling that promotes granulosa cell proliferation. J. Cell Sci. 119, 3811–3821.
CrossRef | CAS | PubMed |

Gilchrist, R. B., Lane, M., and Thompson, J. G. (2008). Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum. Reprod. Update 14, 159–177.
CrossRef | CAS | PubMed |

Gittens, J. E., and Kidder, G. M. (2005). Differential contributions of connexin37 and connexin43 to oogenesis revealed in chimeric reaggregated mouse ovaries. J. Cell Sci. 118, 5071–5078.
CrossRef | CAS | PubMed |

Hashimoto, O., Takagi, R., Yanuma, F., Doi, S., Shindo, J., Endo, H., Hasegawa, Y., and Shimasaki, S. (2012). Identification and characterisation of canine growth differentiation factor-9 and its splicing variant. Gene 499, 266–272.
CrossRef | CAS | PubMed |

Hussein, T. S., Thompson, J. G., and Gilchrist, R. B. (2006). Oocyte-secreted factors enhance oocyte developmental competence. Dev. Biol. 296, 514–521.
CrossRef | CAS | PubMed |

Ikeda, S., Imai, H., and Yamada, M. (2003). Apoptosis in cumulus cells during in vitro maturation of bovine cumulus-enclosed oocytes. Reproduction 125, 369–376.
CrossRef | CAS | PubMed |

Jang, G., Kim, M. K., Oh, H. J., Hossein, M. S., Fibrianto, Y. H., Hong, S. G., Park, J. E., Kim, J. J., Kim, H. J., Kang, S. K., Kim, D. Y., and Lee, B. C. (2007). Birth of viable female dogs produced by somatic cell nuclear transfer. Theriogenology 67, 941–947.
CrossRef | CAS | PubMed |

Kaláb, P., Sršeň, V., Farstad, W., Krogenaes, A., Motlík, J., and Hafne, A.-L. (1997). MAP kinase activation and Raf-1 synthesis in blue fox oocytes is controlled by cumulus granulosa cells. Theriogenology 47, 400.
CrossRef |

Kempisty, B., Wozna, M., Piotrowska, H., Bukowska, D., Jackowska, M., Antosik, P., Jaskowski, J. M., and Brussow, K. P. (2012). The expression of genes encoding zona pellucida glycoproteins in canine cumulus–oocyte complexes cultured in vitro in media supplemented with progesterone and oestradiol. Theriogenology 77, 684–693.
CrossRef | CAS | PubMed |

Kempisty, B., Ziółkowska, A., Piotrowska, H., Zawierucha, P., Antosik, P., Bukowska, D., Ciesiółka, S., Jaśkowski, J. M., Brüssow, K. P., Nowicki, M., and Zabel, M. (2013). Real-time proliferation of porcine cumulus cells is related to the protein levels and cellular distribution of Cdk4 and Cx43. Theriogenology 80, 411–420.
CrossRef | CAS | PubMed |

Kim, M. K., Fibrianto, Y. H., Oh, H. J., Jang, G., Kim, H. J., Lee, K. S., Kang, S. K., Lee, B. C., and Hwang, W. S. (2005). Effects of oestradiol-17beta and progesterone supplementation on in vitro nuclear maturation of canine oocytes. Theriogenology 63, 1342–1353.
CrossRef | CAS | PubMed |

Lee, B. C., Kim, M. K., Jang, G., Oh, H. J., Yuda, F., Kim, H. J., Hossein, M. S., Kim, J. J., Kang, S. K., Schatten, G., and Hwang, W. S. (2005). Dogs cloned from adult somatic cells. Nature 436, 641.
CrossRef | CAS | PubMed |

Leon, P. M., Campos, V. F., Kaefer, C., Begnini, K. R., McBride, A. J., Dellagostin, O. A., Seixas, F. K., Deschamps, J. C., and Collares, T. (2013). Expression of apoptotic genes in immature and in vitro-matured equine oocytes and cumulus cells. Zygote 21, 279–285.
CrossRef | CAS | PubMed |

Liang, S., Kang, J., Jin, H., Liu, X., Li, J., Li, S., Lu, Y., Wang, W., and Yin, X. J. (2012). The influence of 9-cis-retinoic acid on nuclear and cytoplasmic maturation and gene expression in canine oocytes during in vitro maturation. Theriogenology 77, 1198–1205.
CrossRef | CAS | PubMed |

Lopes, G., Alves, M. G., Carvalho, R. A., Luvoni, G. C., and Rocha, A. (2011). DNA fragmentation in canine oocytes after in vitro maturation in TCM-199 medium supplemented with different proteins. Theriogenology 76, 1304–1312.
CrossRef | CAS | PubMed |

Otoi, T., Willingham, L., Shin, T., Kraemer, D. C., and Westhusin, M. (2002). Effects of oocyte culture density on meiotic competence of canine oocytes. Reproduction 124, 775–781.
CrossRef | CAS | PubMed |

Otoi, T., Shin, T., Kraemer, D. C., and Westhusin, M. E. (2007). Role of cumulus cells on in vitro maturation of canine oocytes. Reprod. Domest. Anim. 42, 184–189.
CrossRef | CAS | PubMed |

Ouandaogo, Z. G., Frydman, N., Hesters, L., Assou, S., Haouzi, D., Dechaud, H., Frydman, R., and Hamamah, S. (2012). Differences in transcriptomic profiles of human cumulus cells isolated from oocytes at GV, MI and MII stages after in vivo and in vitro oocyte maturation. Hum. Reprod. 27, 2438–2447.
CrossRef | CAS | PubMed |

Phillips, D. M., and Dekel, N. (1991). Maturation of the rat cumulus–oocyte complex: structure and function. Mol. Reprod. Dev. 28, 297–306.
CrossRef | CAS | PubMed |

Reynaud, K., Fontbonne, A., Marseloo, N., Viaris de Lesegno, C., Saint-Dizier, M., and Chastant-Maillard, S. (2006). In vivo canine oocyte maturation, fertilisation and early embryogenesis: a review. Theriogenology 66, 1685–1693.
CrossRef | PubMed |

Reynaud, K., Chebrout, M., Tanguy-Dezaux, C., de la Villeon, G., and Chastant-Maillard, S. (2012). Chromatin patterns of immature canine oocytes after in vitro maturation. Reprod. Domest. Anim. 47, 70–73.
CrossRef | PubMed |

Richards, J. S. (2005). Ovulation: new factors that prepare the oocyte for fertilisation. Mol. Cell. Endocrinol. 234, 75–79.
CrossRef | CAS | PubMed |

Rodrigues, B. A., Rodrigues, C. A., Salviano, M. B., Willhelm, B. R., Collares, F. J., and Rodrigues, J. L. (2013). Similar patterns of embryo development in canine oocytes cultured in vitro at oxygen tensions of 5 and 20%. Theriogenology 79, 1224–1228.
CrossRef | CAS | PubMed |

Rouhollahi Varnosfaderani, Sh., Ostadhosseini, S., Hajian, M., Hosseini, S. M., Khashouei, E. A., Abbasi, H., Hosseinnia, P., and Nasr-Esfahani, M. H. (2013). Importance of the GDF9 signaling pathway on cumulus cell expansion and oocyte competency in sheep. Theriogenology 80, 470–478.
CrossRef | CAS |

Salavati, M., Ghafari, F., Zhang, T., and Fouladi-Nashta, A. A. (2013). Influence of caffeine pretreatment on biphasic in vitro maturation of dog oocytes. Theriogenology 80, 784–792.
CrossRef | CAS | PubMed |

Salhab, M., Dhorne-Pollet, S., Auclair, S., Guyader-Joly, C., Brisard, D., Dalbies-Tran, R., Dupont, J., Ponsart, C., Mermillod, P., and Uzbekova, S. (2013). In vitro maturation of oocytes alters gene expression and signalling pathways in bovine cumulus cells. Mol. Reprod. Dev. 80, 166–182.
CrossRef | CAS | PubMed |

Sasseville, M., Gagnon, M. C., Guillemette, C., Sullivan, R., Gilchrist, R. B., and Richard, F. J. (2009). Regulation of gap junctions in porcine cumulus–oocyte complexes: contributions of granulosa cell contact, gonadotrophins and lipid rafts. Mol. Endocrinol. 23, 700–710.
CrossRef | CAS | PubMed |

Song, H. J., Kang, E. J., Maeng, G. H., Ock, S. A., Lee, S. L., Yoo, J. G., Jeon, B. G., and Rho, G. J. (2011). Influence of epidermal growth factor supplementation during in vitro maturation on nuclear status and gene expression of canine oocytes. Res. Vet. Sci. 91, 439–445.
CrossRef | CAS | PubMed |

Songsasen, N., and Wildt, D. E. (2007). Oocyte biology and challenges in developing in vitro maturation systems in the domestic dog. Anim. Reprod. Sci. 98, 2–22.
CrossRef | CAS | PubMed |

Su, Y. Q., Wigglesworth, K., Pendola, F. L., O’Brien, M. J., and Eppig, J. J. (2002). Mitogen-activated protein kinase (MAPK) activity in cumulus cells is essential for gonadotrophin-induced oocyte meiotic resumption and cumulus expansion in the mouse. Endocrinology 143, 2221–2232.
CrossRef | CAS | PubMed |

Su, Y. Q., Denegre, J. M., Wigglesworth, K., Pendola, F. L., O’Brien, M. J., and Eppig, J. J. (2003). Oocyte-dependent activation of mitogen-activated protein kinase (ERK1/2) in cumulus cells is required for the maturation of the mouse oocyte–cumulus cell complex. Dev. Biol. 263, 126–138.
CrossRef | CAS | PubMed |

Sugiura, K., and Eppig, J. J. (2005). Control of metabolic cooperativity between oocytes and their companion granulosa cells by mouse oocytes. Society for Reproductive Biology Founders’ Lecture 2005. Reprod. Fertil. Dev. 17, 667–674.
CrossRef | CAS | PubMed |

Tanghe, S., Van Soom, A., Nauwynck, H., Coryn, M., and de Kruif, A. (2002). Minireview: functions of the cumulus oophorus during oocyte maturation, ovulation and fertilisation. Mol. Reprod. Dev. 61, 414–424.
CrossRef | CAS | PubMed |

Teilmann, S. C. (2005). Differential expression and localisation of connexin-37 and connexin-43 in follicles of different stages in the 4-week-old mouse ovary. Mol. Cell. Endocrinol. 234, 27–35.
CrossRef | CAS | PubMed |

Tsutsui, T. (1989). Gamete physiology and timing of ovulation and fertilisation in dogs. J. Reprod. Fertil. Suppl. 39, 269–275.
| CAS | PubMed |

Turathum, B., Saikhun, K., Sangsuwan, P., and Kitiyanant, Y. (2010). Effects of vitrification on nuclear maturation, ultrastructural changes and gene expression of canine oocytes. Reprod. Biol. Endocrinol. 8, 70–78.
| PubMed |

Vitt, U. A., McGee, E. A., Hayashi, M., and Hsueh, A. J. (2000). In vivo treatment with GDF-9 stimulates primordial and primary follicle progression and theca cell marker CYP17 in ovaries of immature rats. Endocrinology 141, 3814–3820.
| CAS | PubMed |

Wert, S. E., and Larsen, W. J. (1990). Pre-endocytotic alterations in cumulus cell gap junctions precede meiotic resumption in the rat cumulus–oocyte complex. Tissue Cell 22, 827–851.
CrossRef | CAS | PubMed |

Yuan, Y. Q., Van Soom, A., Leroy, J. L., Dewulf, J., Van Zeveren, A., de Kruif, A., and Peelman, L. J. (2005). Apoptosis in cumulus cells, but not in oocytes, may influence bovine embryonic developmental competence. Theriogenology 63, 2147–2163.
CrossRef | CAS | PubMed |

Zhang, M., Ouyang, H., and Xia, G. (2009). The signal pathway of gonadotrophin-induced mammalian oocyte meiotic resumption. Mol. Hum. Reprod. 15, 399–409.
CrossRef | PubMed |


   
Subscriber Login
Username:
Password:  

 
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014