Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Effects of extracellular matrices and lectin Dolichos biflorus agglutinin on cell adhesion and self-renewal of bovine gonocytes cultured in vitro

Sung-Min Kim A C , Mayako Fujihara A B , Mahesh Sahare A , Naojiro Minami A , Masayasu Yamada A and Hiroshi Imai A D

A Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.

B Smithsonian Conservation Biology Institute, Center for Species Survival, National Zoological Park, VA 22630, USA.

C Present address: Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96813, USA.

D Corresponding author. Email: imai@kais.kyoto-u.ac.jp

Reproduction, Fertility and Development 26(2) 268-281 https://doi.org/10.1071/RD12214
Submitted: 5 July 2012  Accepted: 13 December 2012   Published: 21 February 2013

Abstract

Surface molecules of primitive male germ cells, gonocytes, are essential components for regulating cell adhesion and maintaining self-renewal in mammalian species. In domestic animals, the stage-specific glycan epitope α-N-acetylgalactosamine (GalNAc) is recognised by the lectin Dolichos biflorus agglutinin (DBA) and is found on the surface of gonocytes and spermatogonia. Gonocytes from bovine testis formed mouse embryonic stem-like cell colonies on plates that had been coated with DBA or extracellular matrix (ECM) components, such as gelatin (GN), laminin (LN) and poly-L-lysine (PLL). The number of colonies on the DBA-coated plate was significantly higher than that on the GN-, LN- and PLL-coated plates. Pretreating gonocytes with DBA to neutralise the terminal GalNAc residues strongly suppressed colony formation. Furthermore, expression of a germ cell-specific gene and pluripotency-related transcription factors was increased considerably on the DBA-coated plates. These results suggest that the GalNAc residues on gonocytes can recognise precoated DBA on plates and the resulting GalNAc–DBA complexes support germ cell and stem cell potentials of gonocytes in vitro. These glycan complexes, through the GalNAc epitope, may provide a suitable microenvironment for the adhesion and cell proliferation of gonocytes in culture.

Additional keywords: cattle, DBA, ECM, glycan epitope, male germ cells, N-acetylgalactosamine, spermatogonia, testis.


References

Akama, T. O., Nakagawa, H., Sugihara, K., Narisawa, S., Ohyama, C., Nishimura, S., O’Brien, D. A., Moremen, K. W., Millan, J. L., and Fukuda, M. N. (2002). Germ cell survival through carbohydrate-mediated interaction with Sertoli cells. Science 295, 124–127.
Germ cell survival through carbohydrate-mediated interaction with Sertoli cells.CrossRef | 11778047PubMed | open url image1

Aponte, P. M., Soda, T., Teerds, K. J., Mizrak, S. C., van de Kant, H. J., and de Rooij, D. G. (2008). Propagation of bovine spermatogonial stem cells in vitro. Reproduction 136, 543–557.
Propagation of bovine spermatogonial stem cells in vitro.CrossRef | 1:CAS:528:DC%2BD1cXhsVCjtrnL&md5=e6f6f8bfd0efb715e584f162b141e94eCAS | 18663014PubMed | open url image1

Chai, C., and Leong, K. W. (2007). Biomaterials approach to expand and direct differentiation of stem cells. Mol. Ther. 15, 467–480.
Biomaterials approach to expand and direct differentiation of stem cells.CrossRef | 1:CAS:528:DC%2BD2sXhtVKhsr%2FN&md5=bfe9de4b104a0955b1ca046e7c04a9c7CAS | 17264853PubMed | open url image1

Culty, M. (2009). Gonocytes, the forgotten cells of the germ cell lineage. Birth Defects Res. C Embryo Today 87, 1–26.
Gonocytes, the forgotten cells of the germ cell lineage.CrossRef | 1:CAS:528:DC%2BD1MXksVKrsrY%3D&md5=076f94d5a219337bc768d2c70e449ad0CAS | 19306346PubMed | open url image1

Curtis, S. K., and Amann, R. P. (1981). Testicular development and establishment of spermatogenesis in Holstein bulls. J. Anim. Sci. 53, 1645–1657.
| 1:STN:280:DyaL387ovFOhuw%3D%3D&md5=c3bdcbdde4589a3a1ecf48b1fb5ced8dCAS | 7341622PubMed | open url image1

Dennis, J. W., Nabi, I. R., and Demetriou, M. (2009). Metabolism, cell surface organization, and disease. Cell 139, 1229–1241.
Metabolism, cell surface organization, and disease.CrossRef | 20064370PubMed | open url image1

Ertl, C., and Wrobel, K. H. (1992). Distribution of sugar residues in the bovine testis during postnatal ontogenesis demonstrated with lectin–horseradish peroxidase conjugates. Histochemistry 97, 161–171.
Distribution of sugar residues in the bovine testis during postnatal ontogenesis demonstrated with lectin–horseradish peroxidase conjugates.CrossRef | 1:CAS:528:DyaK38XhsVyqtro%3D&md5=e75b15410756fa2ed4562065937611f4CAS | 1559848PubMed | open url image1

Folkman, J., Haudenschild, C. C., and Zetter, B. R. (1979). Long-term culture of capillary endothelial cells. Proc. Natl Acad. Sci. USA 76, 5217–5221.
Long-term culture of capillary endothelial cells.CrossRef | 1:STN:280:DyaL3c%2Fls1Kltw%3D%3D&md5=ea246bb14c300776b08234ba79ed9cc2CAS | 291937PubMed | open url image1

Fujihara, M., Kim, S. M., Minami, N., Yamada, M., and Imai, H. (2011). Characterization and in vitro culture of male germ cells from developing bovine testis. J. Reprod. Dev. 57, 355–364.
Characterization and in vitro culture of male germ cells from developing bovine testis.CrossRef | 1:CAS:528:DC%2BC3MXpslOiur0%3D&md5=965d5a51eca3e82e275fcbc44d70ad70CAS | 21289464PubMed | open url image1

Garcia-Castro, M. I., Anderson, R., Heasman, J., and Wylie, C. (1997). Interactions between germ cells and extracellular matrix glycoproteins during migration and gonad assembly in the mouse embryo. J. Cell Biol. 138, 471–480.
Interactions between germ cells and extracellular matrix glycoproteins during migration and gonad assembly in the mouse embryo.CrossRef | 1:CAS:528:DyaK2sXkvFCjsrY%3D&md5=9ba0718b82d68290dccae560b20872d8CAS | 9230086PubMed | open url image1

Goel, S., Sugimoto, M., Minami, N., Yamada, M., Kume, S., and Imai, H. (2007). Identification, isolation, and in vitro culture of porcine gonocytes. Biol. Reprod. 77, 127–137.
Identification, isolation, and in vitro culture of porcine gonocytes.CrossRef | 1:CAS:528:DC%2BD2sXntV2gtrk%3D&md5=080a814e02085fee82ee922377679f1bCAS | 17377141PubMed | open url image1

Goel, S., Fujihara, M., Minami, N., Yamada, M., and Imai, H. (2008). Expression of NANOG, but not POU5F1, points to the stem cell potential of primitive germ cells in neonatal pig testis. Reproduction 135, 785–795.
Expression of NANOG, but not POU5F1, points to the stem cell potential of primitive germ cells in neonatal pig testis.CrossRef | 1:CAS:528:DC%2BD1cXnsVOksrs%3D&md5=9c69798dcee117a5c21d6bd1f5936816CAS | 18367503PubMed | open url image1

Goel, S., Fujihara, M., Tsuchiya, K., Takagi, Y., Minami, N., Yamada, M., and Imai, H. (2009). Multipotential ability of primitive germ cells from neonatal pig testis cultured in vitro. Reprod. Fertil. Dev. 21, 696–708.
Multipotential ability of primitive germ cells from neonatal pig testis cultured in vitro.CrossRef | 1:CAS:528:DC%2BD1MXmsVCrurY%3D&md5=7bcedbd306dcedfebe221a8d8850885dCAS | 19486607PubMed | open url image1

Hamra, F. K., Chapman, K. M., Nguyen, D. M., Williams-Stephens, A. A., Hammer, R. E., and Garbers, D. L. (2005). Self renewal, expansion, and transfection of rat spermatogonial stem cells in culture. Proc. Natl Acad. Sci. USA 102, 17 430–17 435.
Self renewal, expansion, and transfection of rat spermatogonial stem cells in culture.CrossRef | 1:CAS:528:DC%2BD2MXhtlSqtb%2FF&md5=61dcfecdc16ff4c3ce185a51ea9ffbbdCAS | open url image1

Herrid, M., Davey, R. J., and Hill, J. R. (2007). Characterization of germ cells from pre-pubertal bull calves in preparation for germ cell transplantation. Cell Tissue Res. 330, 321–329.
Characterization of germ cells from pre-pubertal bull calves in preparation for germ cell transplantation.CrossRef | 17593396PubMed | open url image1

Herrid, M., Davey, R. J., Hutton, K., Colditz, I. G., and Hill, J. R. (2009). A comparison of methods for preparing enriched populations of bovine spermatogonia. Reprod. Fertil. Dev. 21, 393–399.
A comparison of methods for preparing enriched populations of bovine spermatogonia.CrossRef | 1:CAS:528:DC%2BD1MXisFemtr8%3D&md5=8f7f4201e970f113faafc394537ee3ddCAS | 19261216PubMed | open url image1

Huang, H. H., and Stanley, P. (2010). A testis-specific regulator of complex and hybrid N-glycan synthesis. J. Cell Biol. 190, 893–910.
A testis-specific regulator of complex and hybrid N-glycan synthesis.CrossRef | 1:CAS:528:DC%2BC3cXhtFygsr7O&md5=7868ce6277c49c1bf0bf5e0bffaf7df8CAS | 20805325PubMed | open url image1

Izadyar, F., Spierenberg, G. T., Creemers, L. B., den Ouden, K., and de Rooij, D. G. (2002). Isolation and purification of type A spermatogonia from the bovine testis. Reproduction 124, 85–94.
Isolation and purification of type A spermatogonia from the bovine testis.CrossRef | 1:CAS:528:DC%2BD38XmtFaksL8%3D&md5=9970823eefe8a9dc3e9a45524bbfc122CAS | 12090922PubMed | open url image1

Kamada, Y., Muramatsu, H., Arita, Y., Yamada, T., and Muramatsu, T. (1991). Structural studies on a binding site for Dolichos biflorus agglutinin in the small intestine of the mouse. J. Biochem. 109, 178–183.
| 1:CAS:528:DyaK3MXhsVShu74%3D&md5=5851e8b20e87e61f259e6a24ed28716cCAS | 2016266PubMed | open url image1

Kanatsu-Shinohara, M., Ogonuki, N., Inoue, K., Miki, H., Ogura, A., Toyokuni, S., and Shinohara, T. (2003). Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol. Reprod. 69, 612–616.
Long-term proliferation in culture and germline transmission of mouse male germline stem cells.CrossRef | 1:CAS:528:DC%2BD3sXlvVerurc%3D&md5=bed0c7eff283021cc98d8fd5c5a88969CAS | 12700182PubMed | open url image1

Kanatsu-Shinohara, M., Miki, H., Inoue, K., Ogonuki, N., Toyokuni, S., Ogura, A., and Shinohara, T. (2005). Long-term culture of mouse male germline stem cells under serum- or feeder-free conditions. Biol. Reprod. 72, 985–991.
Long-term culture of mouse male germline stem cells under serum- or feeder-free conditions.CrossRef | 1:CAS:528:DC%2BD2MXis12hsLY%3D&md5=27daa2ad31c034b5d749e6cae92777e2CAS | 15601913PubMed | open url image1

Kanatsu-Shinohara, M., Muneto, T., Lee, J., Takenaka, M., Chuma, S., Nakatsuji, N., Horiuchi, T., and Shinohara, T. (2008a). Long-term culture of male germline stem cells from hamster testes. Biol. Reprod. 78, 611–617.
Long-term culture of male germline stem cells from hamster testes.CrossRef | 1:CAS:528:DC%2BD1cXjvVaitbg%3D&md5=6acab49c3c511b001d18240fe337af1aCAS | 18094355PubMed | open url image1

Kanatsu-Shinohara, M., Takehashi, M., Takashima, S., Lee, J., Morimoto, H., Chuma, S., Raducanu, A., Nakatsuji, N., Fassler, R., and Shinohara, T. (2008b). Homing of mouse spermatogonial stem cells to germline niche depends on beta1-integrin. Cell Stem Cell 3, 533–542.
Homing of mouse spermatogonial stem cells to germline niche depends on beta1-integrin.CrossRef | 1:CAS:528:DC%2BD1cXhsVaqs7%2FO&md5=27828157885cc47a179c5acc24839e78CAS | 18983968PubMed | open url image1

Klisch, K., Jeanrond, E., Pang, P. C., Pich, A., Schuler, G., Dantzer, V., Kowalewski, M. P., and Dell, A. (2008). A tetraantennary glycan with bisecting N-acetylglucosamine and the Sda antigen is the predominant N-glycan on bovine pregnancy-associated glycoproteins. Glycobiology 18, 42–52.
A tetraantennary glycan with bisecting N-acetylglucosamine and the Sda antigen is the predominant N-glycan on bovine pregnancy-associated glycoproteins.CrossRef | 1:CAS:528:DC%2BD1cXhtFeisw%3D%3D&md5=2cfd267150234d79cdbec5b041bfa9f9CAS | 17951374PubMed | open url image1

Klisch, K., Contreras, D. A., Sun, X., Brehm, R., Bergmann, M., and Alberio, R. (2011). The Sda/GM2-glycan is a carbohydrate marker of porcine primordial germ cells and of a subpopulation of spermatogonia in cattle, pigs, horses and llama. Reproduction 142, 667–674.
The Sda/GM2-glycan is a carbohydrate marker of porcine primordial germ cells and of a subpopulation of spermatogonia in cattle, pigs, horses and llama.CrossRef | 1:CAS:528:DC%2BC3MXhsFOhsbrO&md5=fdb44192a524fc6c77c5348e0f90e572CAS | 21896636PubMed | open url image1

Koruji, M., Movahedin, M., Mowla, S. J., Gourabi, H., and Arfaee, A. J. (2009). Efficiency of adult mouse spermatogonial stem cell colony formation under several culture conditions. In Vitro Cell. Dev. Biol. Anim. 45, 281–289.
Efficiency of adult mouse spermatogonial stem cell colony formation under several culture conditions.CrossRef | 1:CAS:528:DC%2BD1MXmtF2rtrs%3D&md5=bd3a8bac762af28d7e2e406457a0b98aCAS | 19221844PubMed | open url image1

Kubota, H., Avarbock, M. R., and Brinster, R. L. (2004). Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc. Natl Acad. Sci. USA 101, 16 489–16 494.
Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells.CrossRef | 1:CAS:528:DC%2BD2cXhtVOisbvP&md5=8eb8a97b6e2751c72f7f7b6f80e409b2CAS | open url image1

Kubota, H., Wu, X., Goodyear, S. M., Avarbock, M. R., and Brinster, R. L. (2011). Glial cell line-derived neurotrophic factor and endothelial cells promote self-renewal of rabbit germ cells with spermatogonial stem cell properties. FASEB J. 25, 2604–2614.
Glial cell line-derived neurotrophic factor and endothelial cells promote self-renewal of rabbit germ cells with spermatogonial stem cell properties.CrossRef | 1:CAS:528:DC%2BC3MXpvFers74%3D&md5=4064d23e9875343392d8a76e7f7a9faaCAS | 21525489PubMed | open url image1

Luo, J., Megee, S., and Dobrinski, I. (2009). Asymmetric distribution of UCH-L1 in spermatogonia is associated with maintenance and differentiation of spermatogonial stem cells. J. Cell. Physiol. 220, 460–468.
Asymmetric distribution of UCH-L1 in spermatogonia is associated with maintenance and differentiation of spermatogonial stem cells.CrossRef | 1:CAS:528:DC%2BD1MXotFags7c%3D&md5=982da295520d4efa784d405828772210CAS | 19388011PubMed | open url image1

Meng, X., Lindahl, M., Hyvonen, M. E., Parvinen, M., de Rooij, D. G., Hess, M. W., Raatikainen-Ahokas, A., Sainio, K., Rauvala, H., Lakso, M., Pichel, J. G., Westphal, H., Saarma, M., and Sariola, H. (2000). Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287, 1489–1493.
Regulation of cell fate decision of undifferentiated spermatogonia by GDNF.CrossRef | 1:CAS:528:DC%2BD3cXhsV2qtL8%3D&md5=9fef5f444bc2f28ca398345054c353b2CAS | 10688798PubMed | open url image1

Mitchell, R. T., Cowan, G., Morris, K. D., Anderson, R. A., Fraser, H. M., McKenzie, K. J., Wallace, W. H., Kelnar, C. J., Saunders, P. T., and Sharpe, R. M. (2008). Germ cell differentiation in the marmoset (Callithrix jacchus) during fetal and neonatal life closely parallels that in the human. Hum. Reprod. 23, 2755–2765.
Germ cell differentiation in the marmoset (Callithrix jacchus) during fetal and neonatal life closely parallels that in the human.CrossRef | 1:CAS:528:DC%2BD1cXhsVWmt77F&md5=cb0a05ad6fe0db931ae223a80103c71dCAS | 18694875PubMed | open url image1

Mohamadi, S. M., Movahedin, M., Koruji, S. M., Jafarabadi, M. A., and Makoolati, Z. (2012). Comparison of colony formation in adult mouse spermatogonial stem cells developed in Sertoli and STO coculture systems. Andrologia 44, 431–437.
Comparison of colony formation in adult mouse spermatogonial stem cells developed in Sertoli and STO coculture systems.CrossRef | 1:CAS:528:DC%2BC38Xhs1WkurjI&md5=68036605d99cfd5ef7f9873d6ec0535bCAS | 21762195PubMed | open url image1

Nagano, M., Avarbock, M. R., Leonida, E. B., Brinster, C. J., and Brinster, R. L. (1998). Culture of mouse spermatogonial stem cells. Tissue Cell 30, 389–397.
Culture of mouse spermatogonial stem cells.CrossRef | 1:STN:280:DyaK1M%2FgtlOnsg%3D%3D&md5=74c0a1c61db4c5815831b2366c73a5d6CAS | 9787472PubMed | open url image1

Nagano, M., Ryu, B. Y., Brinster, C. J., Avarbock, M. R., and Brinster, R. L. (2003). Maintenance of mouse male germ line stem cells in vitro. Biol. Reprod. 68, 2207–2214.
Maintenance of mouse male germ line stem cells in vitro.CrossRef | 1:CAS:528:DC%2BD3sXks1Ggsbk%3D&md5=623ab7cb129a40b468ecae458f470c32CAS | 12606373PubMed | open url image1

Nash, R., Neves, L., Faast, R., Pierce, M., and Dalton, S. (2007). The lectin Dolichos biflorus agglutinin recognizes glycan epitopes on the surface of murine embryonic stem cells: a new tool for characterizing pluripotent cells and early differentiation. Stem Cells 25, 974–982.
The lectin Dolichos biflorus agglutinin recognizes glycan epitopes on the surface of murine embryonic stem cells: a new tool for characterizing pluripotent cells and early differentiation.CrossRef | 1:CAS:528:DC%2BD2sXls1Kmtrc%3D&md5=173b32a5862d5a4efabe49294c63026bCAS | 17170066PubMed | open url image1

Orwig, K. E., Avarbock, M. R., and Brinster, R. L. (2002a). Retrovirus-mediated modification of male germline stem cells in rats. Biol. Reprod. 67, 874–879.
Retrovirus-mediated modification of male germline stem cells in rats.CrossRef | 1:CAS:528:DC%2BD38XmsV2jsbw%3D&md5=f0db7db7a8dbc24f7ab5b746ed6bab9aCAS | 12193397PubMed | open url image1

Orwig, K. E., Ryu, B. Y., Avarbock, M. R., and Brinster, R. L. (2002b). Male germ-line stem cell potential is predicted by morphology of cells in neonatal rat testes. Proc. Natl Acad. Sci. USA 99, 11 706–11 711.
Male germ-line stem cell potential is predicted by morphology of cells in neonatal rat testes.CrossRef | 1:CAS:528:DC%2BD38XntFWqsbc%3D&md5=add9c0157d4db16db5ff5b2401f09402CAS | open url image1

Orwig, K. E., Shinohara, T., Avarbock, M. R., and Brinster, R. L. (2002c). Functional analysis of stem cells in the adult rat testis. Biol. Reprod. 66, 944–949.
Functional analysis of stem cells in the adult rat testis.CrossRef | 1:CAS:528:DC%2BD38XitlCltb4%3D&md5=12303e4921d97151f66ce18a79c71aa8CAS | 11906912PubMed | open url image1

Piller, V., Piller, F., and Cartron, J. P. (1990). Comparison of the carbohydrate-binding specificities of seven N-acetyl-d-galactosamine-recognizing lectins. Eur. J. Biochem. 191, 461–466.
Comparison of the carbohydrate-binding specificities of seven N-acetyl-d-galactosamine-recognizing lectins.CrossRef | 1:CAS:528:DyaK3cXkvFGqtrk%3D&md5=6d7bc8c876bbdb073a163aa6647c2cebCAS | 2384093PubMed | open url image1

Richler, C., and Yaffe, D. (1970). The in vitro cultivation and differentiation capacities of myogenic cell lines. Dev. Biol. 23, 1–22.
The in vitro cultivation and differentiation capacities of myogenic cell lines.CrossRef | 1:STN:280:DyaE3M%2Fjslymtg%3D%3D&md5=90099d6a66d1821f55f9955b217d59e9CAS | 5481965PubMed | open url image1

Shinohara, T., Avarbock, M. R., and Brinster, R. L. (1999). Beta1- and alpha6-integrin are surface markers on mouse spermatogonial stem cells. Proc. Natl Acad. Sci. USA 96, 5504–5509.
Beta1- and alpha6-integrin are surface markers on mouse spermatogonial stem cells.CrossRef | 1:CAS:528:DyaK1MXjtFCnsbg%3D&md5=ab2f2648b68bcf3fd809c6278c843617CAS | 10318913PubMed | open url image1

Siu, M. K., and Cheng, C. Y. (2004). Dynamic cross-talk between cells and the extracellular matrix in the testis. Bioessays 26, 978–992.
Dynamic cross-talk between cells and the extracellular matrix in the testis.CrossRef | 1:CAS:528:DC%2BD2cXnvFWlt7c%3D&md5=e34e3ca126f8834ccf4578983af9e422CAS | 15351968PubMed | open url image1

Varki, A., and Lowe, J. (2009), Biological roles of glycans. In ‘Essentials of Glycobiology’. (Eds A. Varki, R. Cummings, J. Esko, H. Freeze, P. Stanley, C. Bertozzi, G. Hart and M. Etlzler.) pp. 75–88. (Cold Spring Harbor Laboratory Press: New York.)

Wu, X., Oatley, J. M., Oatley, M. J., Kaucher, A. V., Avarbock, M. R., and Brinster, R. L. (2010). The POU domain transcription factor POU3F1 is an important intrinsic regulator of GDNF-induced survival and self-renewal of mouse spermatogonial stem cells. Biol. Reprod. 82, 1103–1111.
The POU domain transcription factor POU3F1 is an important intrinsic regulator of GDNF-induced survival and self-renewal of mouse spermatogonial stem cells.CrossRef | 1:CAS:528:DC%2BC3cXmvVCgt70%3D&md5=4cc4cfd7c941c551d3dbdcdf9cc5ac1cCAS | 20181621PubMed | open url image1

Yavin, Z., and Yavin, E. (1980). Survival and maturation of cerebral neurons on poly(L-lysine) surfaces in the absence of serum. Dev. Biol. 75, 454–459.
Survival and maturation of cerebral neurons on poly(L-lysine) surfaces in the absence of serum.CrossRef | 1:CAS:528:DyaL3cXhslyhu7g%3D&md5=403f03c12f46e4493b34868dc83a7befCAS | 6989691PubMed | open url image1


Full Text PDF (2.2 MB) Export Citation Cited By (6)