Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Effects of vitrification of cumulus-enclosed porcine oocytes at the germinal vesicle stage on cumulus expansion, nuclear progression and cytoplasmic maturation

Ruth Appeltant A * , Tamás Somfai B D * , Elisa C. S. Santos B , Thanh Quang Dang-Nguyen A , Takashi Nagai C and Kazuhiro Kikuchi A
+ Author Affiliations
- Author Affiliations

A Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organisation, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan.

B Animal Breeding and Reproduction Research Division, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organisation, Ikenodai 2, Tsukuba, Ibaraki 305-0901, Japan.

C Department of Research Planning and Coordination, National Agriculture and Food Research Organisation, Ikenodai 2, Tsukuba, Ibaraki 305-0901, Japan.

D Corresponding author. Email: somfai@affrc.go.jp

Reproduction, Fertility and Development 29(12) 2419-2429 https://doi.org/10.1071/RD16386
Submitted: 29 September 2016  Accepted: 19 April 2017   Published: 15 May 2017

Abstract

Although offspring have been produced from porcine oocytes vitrified at the germinal vesicle (GV) stage, the rate of embryo development remains low. In the present study, nuclear morphology and progression, cumulus expansion, transzonal projections (TZPs), ATP and glutathione (GSH) levels were compared between vitrified cumulus–oocyte complexes (COCs) and control COCs (no cryoprotectant treatment and no cooling), as well as a toxicity control (no cooling). Vitrification was performed with 17.5% (v/v) ethylene glycol and 17.5% (v/v) propylene glycol. Vitrification at the GV stage caused premature meiotic progression, reflected by earlier GV breakdown and untimely attainment of the MII stage. However, cytoplasmic maturation, investigated by measurement of ATP and GSH levels, as well as cumulus expansion, proceeded normally despite detectable damage to TZPs in vitrified COCs. Moreover, treatment with cryoprotectants caused fragmentation of nucleolus precursor bodies and morphological changes in F-actin from which oocytes were able to recover during subsequent IVM culture. Reduced developmental competence may be explained by premature nuclear maturation leading to oocyte aging, although other mechanisms, such as initiation of apoptosis and reduction of cytoplasmic mRNA, can also be considered. Further research will be required to clarify the presence and effects of these phenomena during the vitrification of immature COCs.

Additional keywords: cryopreservation, cumulus cell, cytoskeleton, gamete.


References

Abràmoff, M., Magalhães, P., and Ram, S. (2004). Image processing with ImageJ. Biophoton. Int. 11, 36–43.

Anderson, M. (1985) Determination of glutathione and glutathione disulfide in biological samples. In ‘Glutamate, Glutamine, Glutathione, and Related Compounds’. (Ed. A. Meister.) pp. 548–555. (Academic Press: New York.)

Appeltant, R., Somfai, T., Nakai, M., Bodó, S., Maes, D., Kikuchi, K., and Van Soom, A. (2015). Interactions between oocytes and cumulus cells during in vitro maturation of porcine cumulus–oocyte complexes in a chemically defined medium: effect of denuded oocytes on cumulus expansion and oocyte maturation. Theriogenology 83, 567–576.
Interactions between oocytes and cumulus cells during in vitro maturation of porcine cumulus–oocyte complexes in a chemically defined medium: effect of denuded oocytes on cumulus expansion and oocyte maturation.CrossRef | 1:CAS:528:DC%2BC2cXhvFKmsbbL&md5=24bfdc88e5d61a73d5c46d943774e850CAS |

Appeltant, R., Somfai, T., Santos, E., and Kikuchi, K. (2017). The effect of exposure time on toxicity of vitrification solution on porcine cumulus–oocyte complexes before in vitro maturation. Reprod. Fertil. Dev. 29, 127.
The effect of exposure time on toxicity of vitrification solution on porcine cumulus–oocyte complexes before in vitro maturation.CrossRef |

Brambillasca, F., Guglielmo, M. C., Coticchio, G., Mignini Renzini, M., Dal Canto, M., and Fadini, R. (2013). The current challenges to efficient immature oocyte cryopreservation. J. Assist. Reprod. Genet. 30, 1531–1539.
The current challenges to efficient immature oocyte cryopreservation.CrossRef |

Dai, J., Wu, C., Muneri, C. W., Niu, Y., Zhang, S., Rui, R., and Zhang, D. (2015). Changes in mitochondrial function in porcine vitrified MII-stage oocytes and their impacts on apoptosis and developmental ability. Cryobiology 71, 291–298.
Changes in mitochondrial function in porcine vitrified MII-stage oocytes and their impacts on apoptosis and developmental ability.CrossRef | 1:CAS:528:DC%2BC2MXht1ygs7rP&md5=e7a1518a548c41e3ce1cb648efdb6d69CAS |

Dalton, C. M., Szabadkai, G., and Carroll, J. (2014). Measurement of ATP in single oocytes: impact of maturation and cumulus cells on levels and consumption. J. Cell. Physiol. 229, 353–361.
Measurement of ATP in single oocytes: impact of maturation and cumulus cells on levels and consumption.CrossRef | 1:CAS:528:DC%2BC3sXhvVWgtL7I&md5=9010dcfdf9bea7892cb0e45bf06060afCAS |

Dekel, N. (2005). Cellular, biochemical and molecular mechanisms regulating oocyte maturation. Mol. Cell. Endocrinol. 234, 19–25.
Cellular, biochemical and molecular mechanisms regulating oocyte maturation.CrossRef | 1:CAS:528:DC%2BD2MXjt1SqtL8%3D&md5=905ec5bc29a95965a3953b0582efa244CAS |

Dekel, N., and Phillips, D. M. (1980). Cyclic AMP, prostaglandin E2 and steroids: possible mediators in the rat cumulus oophorus mucification. Biol. Reprod. 22, 289–296.
Cyclic AMP, prostaglandin E2 and steroids: possible mediators in the rat cumulus oophorus mucification.CrossRef | 1:CAS:528:DyaL3cXhvFWmtLY%3D&md5=2c04f96bd7ead5452fd6c8a364171b07CAS |

Egerszegi, I., Somfai, T., Nakai, M., Tanihara, F., Noguchi, J., Kaneko, H., Nagai, T., Ratky, J., and Kikuchi, K. (2013). Comparison of cytoskeletal integrity, fertilization and developmental competence of oocytes vitrified before or after in vitro maturation in a porcine model. Cryobiology 67, 287–292.
Comparison of cytoskeletal integrity, fertilization and developmental competence of oocytes vitrified before or after in vitro maturation in a porcine model.CrossRef |

Ferreira, E. M., Vireque, A. A., Adona, P. R., Meirelles, F. V., Ferriani, R. A., and Navarro, P. A. A. S. (2009). Cytoplasmic maturation of bovine oocytes: structural and biochemical modifications and acquisition of developmental competence. Theriogenology 71, 836–848.
Cytoplasmic maturation of bovine oocytes: structural and biochemical modifications and acquisition of developmental competence.CrossRef | 1:CAS:528:DC%2BD1MXitVSgs7k%3D&md5=f91a75ef471829f8367aec20f883c6b4CAS |

Funahashi, H., Cantley, T., and Day, B. (1997). Synchronization of meiosis in porcine oocytes by exposure to dibutyryl cyclic adenosine monophosphate improves developmental competence following in vitro fertilization. Biol. Reprod. 57, 49–53.
Synchronization of meiosis in porcine oocytes by exposure to dibutyryl cyclic adenosine monophosphate improves developmental competence following in vitro fertilization.CrossRef | 1:CAS:528:DyaK2sXktFCntb0%3D&md5=ffb7701b6168879bc26861ac3c1a7997CAS |

Grupen, C. G. (2014). The evolution of porcine embryo in vitro production. Theriogenology 81, 24–37.
The evolution of porcine embryo in vitro production.CrossRef |

Grupen, C. G., Nagashima, H., and Nottle, M. B. (1997). Asynchronous meiotic progression in porcine oocytes matured in vitro: a cause of polyspermic fertilization? Reprod. Fertil. Dev. 9, 187–191.
Asynchronous meiotic progression in porcine oocytes matured in vitro: a cause of polyspermic fertilization?CrossRef | 1:STN:280:DyaK2szlt1WntA%3D%3D&md5=f66f8ea25835c6d7c28fdf252aa64c9aCAS |

Herrick, J. R., Wang, C., and Machaty, Z. (2016). The effects of permeating cryoprotectants on intracellular free-calcium concentrations and developmental potential of in vitro-matured feline oocytes. Reprod. Fertil. Dev. 28, 599–607.
The effects of permeating cryoprotectants on intracellular free-calcium concentrations and developmental potential of in vitro-matured feline oocytes.CrossRef | 1:CAS:528:DC%2BC28XktVOisLs%3D&md5=15e66af3c9046b0101c436fa37d13914CAS |

Homa, S. T. (1991). Neomycin, an inhibitor of phosphoinositide hydrolysis, inhibits the resumption of bovine oocyte spontaneous meiotic maturation. J. Exp. Zool. 258, 95–103.
Neomycin, an inhibitor of phosphoinositide hydrolysis, inhibits the resumption of bovine oocyte spontaneous meiotic maturation.CrossRef | 1:CAS:528:DyaK3MXkt1alsLk%3D&md5=0808509935c7acadeb9a43f49d48d736CAS |

Jo, J. W., Jee, B. C., Lee, J. R., and Suh, C. S. (2011). Effect of antifreeze protein supplementation in vitrification medium on mouse oocyte developmental competence. Fertil. Steril. 96, 1239–1245.
Effect of antifreeze protein supplementation in vitrification medium on mouse oocyte developmental competence.CrossRef | 1:CAS:528:DC%2BC3MXhsVSkt73K&md5=b0aeef6f254fcc7b7f9d1c63a444c3c5CAS |

Kaufman, M. L., and Homa, S. T. (1993). Defining a role for calcium in the resumption and progression of meiosis in the pig oocyte. J. Exp. Zool. 265, 69–76.
| 1:STN:280:DyaK3s3htVCquw%3D%3D&md5=12b77f4f47132041819a5f1cd78080a0CAS |

Kim, S. S., Olsen, R., Kim, D. D., and Albertini, D. F. (2014). The impact of vitrification on immature oocyte cell cycle and cytoskeletal integrity in a rat model. J. Assist. Reprod. Genet. 31, 739–747.
The impact of vitrification on immature oocyte cell cycle and cytoskeletal integrity in a rat model.CrossRef |

Krisher, R. L., Brad, A. M., Herrick, J. R., Sparman, M. L., and Swain, J. E. (2007). A comparative analysis of metabolism and viability in porcine oocytes during in vitro maturation. Anim. Reprod. Sci. 98, 72–96.
A comparative analysis of metabolism and viability in porcine oocytes during in vitro maturation.CrossRef | 1:CAS:528:DC%2BD2sXhs1Sksrw%3D&md5=a2c515e0be04b04f358b4a2773ada758CAS |

Macháty, Z., Wang, W., Day, B. N., and Prather, R. S. (1997). Complete activation of porcine oocytes induced by the sulfhydryl reagent, thimerosal. Biol. Reprod. 57, 1123–1127.
Complete activation of porcine oocytes induced by the sulfhydryl reagent, thimerosal.CrossRef |

Maedomari, N., Kikuchi, K., Ozawa, M., Noguchi, J., Kaneko, H., Ohnuma, K., Nakai, M., Shino, M., Nagai, T., and Kashiwazaki, N. (2007). Cytoplasmic glutathione regulated by cumulus cells during porcine oocyte maturation affects fertilization and embryonic development in vitro. Theriogenology 67, 983–993.
Cytoplasmic glutathione regulated by cumulus cells during porcine oocyte maturation affects fertilization and embryonic development in vitro.CrossRef | 1:CAS:528:DC%2BD2sXitFOns70%3D&md5=6a31f92647e993a7f5e1f6a940f444e2CAS |

Manipalviratn, S., Tong, Z. B., Stegmann, B., Widra, E., Carter, J., and DeCherney, A. (2011). Effect of vitrification and thawing on human oocyte ATP concentration. Fertil. Steril. 95, 1839–1841.
Effect of vitrification and thawing on human oocyte ATP concentration.CrossRef | 1:CAS:528:DC%2BC3MXjs1Sru7k%3D&md5=46319f2831f0e09cdb5f0a231e7b0ba5CAS |

Mattioli, M., Barboni, B., Gioia, L., and Loi, P. (2003). Cold-induced calcium elevation triggers DNA fragmentation in immature pig oocytes. Mol. Reprod. Dev. 65, 289–297.
Cold-induced calcium elevation triggers DNA fragmentation in immature pig oocytes.CrossRef | 1:CAS:528:DC%2BD3sXksVOitbo%3D&md5=d3ad727fd120e676e3062d747eae4230CAS |

Miao, Y. L., Kikuchi, K., Sun, Q. Y., and Schatten, H. (2009). Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility. Hum. Reprod. Update 15, 573–585.
Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility.CrossRef |

Mori, T., Amano, T., and Shimizu, H. (2000). Roles of gap junctional communication of cumulus cells in cytoplasmic maturation of porcine oocytes cultured in vitro. Biol. Reprod. 62, 913–919.
Roles of gap junctional communication of cumulus cells in cytoplasmic maturation of porcine oocytes cultured in vitro.CrossRef | 1:CAS:528:DC%2BD3cXitFajt7k%3D&md5=1ea690f4b8bb92c3b9fa821114995f95CAS |

Motlík, J., and Fulka, J. (1976). Breakdown of the germinal vesicle in pig oocytes in vivo and in vitro. J. Exp. Zool. 198, 155–162.
Breakdown of the germinal vesicle in pig oocytes in vivo and in vitro.CrossRef |

Ozawa, M., Nagai, T., Somfai, T. s., Nakai, M., Maedomari, N., Miyazaki, H., Kaneko, H., Noguchi, J., and Kikuchi, K. (2010). Cumulus cell-enclosed oocytes acquire a capacity to synthesize GSH by FSH stimulation during in vitro maturation in pigs. J. Cell. Physiol. 222, 294–301.
Cumulus cell-enclosed oocytes acquire a capacity to synthesize GSH by FSH stimulation during in vitro maturation in pigs.CrossRef | 1:CAS:528:DC%2BD1MXhsFSgsrrN&md5=4fc5c805a787d83d48e3f799b9a6b912CAS |

Petters, R. M., and Wells, K. D. (1993). Culture of pig embryos. J. Reprod. Fertil. Suppl. 48, 61–73.
| 1:STN:280:DyaK2c7psVCktQ%3D%3D&md5=d2a8664c44881c286edee782a5e17448CAS |

Rice, C., and McGaughey, R. (1981). Effect of testosterone and dibutytyl cAMP on the spontaneous maturation of pig oocytes. J. Reprod. Fertil. 62, 245–256.
Effect of testosterone and dibutytyl cAMP on the spontaneous maturation of pig oocytes.CrossRef | 1:CAS:528:DyaL3MXktVSrtL0%3D&md5=b42dd51264a50c60a2037fd599964d5eCAS |

Russell, D. L., Gilchrist, R. B., Brown, H. M., and Thompson, J. G. (2016). Bidirectional communication between cumulus cells and the oocyte: old hands and new players? Theriogenology 86, 62–68.
Bidirectional communication between cumulus cells and the oocyte: old hands and new players?CrossRef | 1:CAS:528:DC%2BC28XmslKru7s%3D&md5=e907f83a632e00b6516a4db3938364ecCAS |

Salvetti, P., Buff, S., Afanassieff, M., Daniel, N., Guerin, P., and Joly, T. (2010). Structural, metabolic and developmental evaluation of ovulated rabbit oocytes before and after cryopreservation by vitrification and slow freezing. Theriogenology 74, 847–855.
Structural, metabolic and developmental evaluation of ovulated rabbit oocytes before and after cryopreservation by vitrification and slow freezing.CrossRef | 1:CAS:528:DC%2BC3cXhtVGrtbjF&md5=8e99a234acf2912fef0a4dd2e1d7accbCAS |

Schoevers, E. J., Bevers, M. M., Roelen, B. A., and Colenbrander, B. (2005). Nuclear and cytoplasmic maturation of sow oocytes are not synchronized by specific meiotic inhibition with roscovitine during in vitro maturation. Theriogenology 63, 1111–1130.
Nuclear and cytoplasmic maturation of sow oocytes are not synchronized by specific meiotic inhibition with roscovitine during in vitro maturation.CrossRef | 1:CAS:528:DC%2BD2MXhtlSltLc%3D&md5=36f05ce4bdd1310c7c264f3a6b0617c1CAS |

Sirard, M. A. (2001). Resumption of meiosis: mechanism involved in meiotic progression and its relation with developmental competence. Theriogenology 55, 1241–1254.
Resumption of meiosis: mechanism involved in meiotic progression and its relation with developmental competence.CrossRef | 1:CAS:528:DC%2BD3MXjsFSisr0%3D&md5=f9ac6ab40205fabfd099d6d14a2f23a7CAS |

Somfai, T., Kikuchi, K., Onishi, A., Iwamoto, M., Fuchimoto, D., Papp, Á. B., Sato, E., and Nagai, T. (2003). Meiotic arrest maintained by cAMP during the initiation of maturation enhances meiotic potential and developmental competence and reduces polyspermy of IVM/IVF porcine oocytes. Zygote 11, 199–206.
Meiotic arrest maintained by cAMP during the initiation of maturation enhances meiotic potential and developmental competence and reduces polyspermy of IVM/IVF porcine oocytes.CrossRef | 1:CAS:528:DC%2BD3sXot12gsL0%3D&md5=4dc8282b03423e04d31ca31390a99a5fCAS |

Somfai, T., Kikuchi, K., Onishi, A., Iwamoto, M., Fuchimoto, D.-i., Papp, B., Sato, E., and Nagai, T. (2004). Relationship between the morphological changes of somatic compartment and the kinetics of nuclear and cytoplasmic maturation of oocytes during in vitro maturation of porcine follicular oocytes. Mol. Reprod. Dev. 68, 484–491.
Relationship between the morphological changes of somatic compartment and the kinetics of nuclear and cytoplasmic maturation of oocytes during in vitro maturation of porcine follicular oocytes.CrossRef | 1:CAS:528:DC%2BD2cXlslWiu7g%3D&md5=95d83349eb8deb5338f24e3ed4a360a7CAS |

Somfai, T., Ozawa, M., Noguchi, J., Kaneko, H., Kuriani Karja, N. W., Farhudin, M., Dinnyés, A., Nagai, T., and Kikuchi, K. (2007). Developmental competence of in vitro-fertilized porcine oocytes after in vitro maturation and solid surface vitrification: effect of cryopreservation on oocyte antioxidative system and cell cycle stage. Cryobiology 55, 115–126.
Developmental competence of in vitro-fertilized porcine oocytes after in vitro maturation and solid surface vitrification: effect of cryopreservation on oocyte antioxidative system and cell cycle stage.CrossRef | 1:CAS:528:DC%2BD2sXpvF2qtbc%3D&md5=eb3a674ffbaa35d88867c3e1b7930f9dCAS |

Somfai, T., Noguchi, J., Kaneko, H., Nakai, M., Ozawa, M., Kashiwazaki, N., Egerszegi, I., Ratky, J., Nagai, T., and Kikuchi, K. (2010). Production of good-quality porcine blastocysts by in vitro fertilization of follicular oocytes vitrified at the germinal vesicle stage. Theriogenology 73, 147–156.
Production of good-quality porcine blastocysts by in vitro fertilization of follicular oocytes vitrified at the germinal vesicle stage.CrossRef | 1:CAS:528:DC%2BD1MXhsFGrsrfJ&md5=405ce273a799ecb3f40b79de9d315e6cCAS |

Somfai, T., Nakai, M., Tanihara, F., Noguchi, J., Kaneko, H., Kashiwazaki, N., Egerszegi, I., Nagai, T., and Kikuchi, K. (2013). Comparison of ethylene glycol and propylene glycol for the vitrification of immature porcine oocytes. J. Reprod. Dev. 59, 378–384.
Comparison of ethylene glycol and propylene glycol for the vitrification of immature porcine oocytes.CrossRef | 1:CAS:528:DC%2BC3sXhs1SitrbK&md5=b76e03f0abaa311b432767d43ecef120CAS |

Somfai, T., Yoshioka, K., Tanihara, F., Kaneko, H., Noguchi, J., Kashiwazaki, N., Nagai, T., and Kikuchi, K. (2014). Generation of live piglets from cryopreserved oocytes for the first time using a defined system for in vitro embryo production. PLoS One 9, e97731.
Generation of live piglets from cryopreserved oocytes for the first time using a defined system for in vitro embryo production.CrossRef |

Somfai, T., Matoba, S., Inaba, Y., Nakai, M., Imai, K., Nagai, T., and Geshi, M. (2015a). Cytoskeletal and mitochondrial properties of bovine oocytes obtained by ovum pick-up: the effects of follicle stimulation and in vitro maturation. Anim. Sci. J. 86, 970–980.
Cytoskeletal and mitochondrial properties of bovine oocytes obtained by ovum pick-up: the effects of follicle stimulation and in vitro maturation.CrossRef | 1:CAS:528:DC%2BC2MXhvFKru7fM&md5=45f350aeda2b38fd6be05b8e4e5bea21CAS |

Somfai, T., Men, N. T., Noguchi, J., Kaneko, H., Kashiwazaki, N., and Kikuchi, K. (2015b). Optimization of cryoprotectant treatment for the vitrification of immature cumulus-enclosed porcine oocytes: comparison of sugars, combinations of permeating cryoprotectants and equilibration regimens. J. Reprod. Dev. 61, 571–579.
Optimization of cryoprotectant treatment for the vitrification of immature cumulus-enclosed porcine oocytes: comparison of sugars, combinations of permeating cryoprotectants and equilibration regimens.CrossRef | 1:CAS:528:DC%2BC2sXlsVGju7s%3D&md5=b83ab8cdeba253df3aeda7f7f4d2fd7bCAS |

Stojkovic, M., Machado, S., Stojkovic, P., Zakhartchenko, V., Hutzler, P., Gonçalves, P., and Wolf, E. (2001). Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biol. Reprod. 64, 904–909.
Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture.CrossRef | 1:CAS:528:DC%2BD3MXhsVKjtrk%3D&md5=8b7cf000f9af1a1d5cf28bb11a06283eCAS |

Succu, S., Bebbere, D., Bogliolo, L., Ariu, F., Fois, S., Leoni, G. G., Berlinguer, F., Naitana, S., and Ledda, S. (2008). Vitrification of in vitro matured ovine oocytes affects in vitro pre-implantation development and mRNA abundance. Mol. Reprod. Dev. 75, 538–546.
Vitrification of in vitro matured ovine oocytes affects in vitro pre-implantation development and mRNA abundance.CrossRef | 1:CAS:528:DC%2BD1cXhs1Crsrk%3D&md5=563e8344984307e56c7e2c8e10223844CAS |

Tanghe, S., Van Soom, A., Nauwynck, H., Coryn, M., and de Kruif, A. (2002). Minireview: functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization. Mol. Reprod. Dev. 61, 414–424.
Minireview: functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization.CrossRef | 1:CAS:528:DC%2BD38XhsFCgtbk%3D&md5=5acaa592247f798a811f0840fe5423c7CAS |

Tharasanit, T., Colleoni, S., Galli, C., Colenbrander, B., and Stout, T. A. (2009). Protective effects of the cumulus–corona radiata complex during vitrification of horse oocytes. Reproduction 137, 391–401.
Protective effects of the cumulus–corona radiata complex during vitrification of horse oocytes.CrossRef | 1:CAS:528:DC%2BD1MXovV2ksbo%3D&md5=79a4b59b773dc288c5f81959c8ef3f64CAS |

Tombes, R. M., Simerly, C., Borisy, G. G., and Schatten, G. (1992). Meiosis, egg activation, and nuclear envelope breakdown are differentially reliant on Ca2+, whereas germinal vesicle breakdown is Ca2+ independent in the mouse oocyte. J. Cell Biol. 117, 799–811.
| 1:CAS:528:DyaK38XitFWks7o%3D&md5=0686a7f17667daf899a0420807b22c8fCAS |

Vallorani, C., Spinaci, M., Bucci, D., Porcu, E., Tamanini, C., and Galeati, G. (2012). Pig oocyte vitrification by Cryotop method and the activation of the apoptotic cascade. Anim. Reprod. Sci. 135, 68–74.
Pig oocyte vitrification by Cryotop method and the activation of the apoptotic cascade.CrossRef | 1:CAS:528:DC%2BC38XhtlCiur7E&md5=11c1eb85babaf196efad90bed6c431b8CAS |

Wang, C., and Machaty, Z. (2013). Calcium influx in mammalian eggs. Reproduction 145, R97–R105.
Calcium influx in mammalian eggs.CrossRef | 1:CAS:528:DC%2BC3sXotFait7k%3D&md5=4ddd0f239d318b63a8d8fb5c075b638bCAS |

Wang, W. H., Machaty, Z., Abeydeera, L. R., Prather, R. S., and Day, B. N. (1998). Parthenogenogenetic activation of pig oocytes with calcium ionophore and the block to sperm penetration after activation. Biol. Reprod. 58, 1357–1366.
Parthenogenogenetic activation of pig oocytes with calcium ionophore and the block to sperm penetration after activation.CrossRef | 1:CAS:528:DyaK1cXjsFSht7Y%3D&md5=5f7d91c4ac0a7c06ac6a6f3514c89ccbCAS |

Yoshida, M., Ishigaki, K., Nagai, T., Chikyu, M., and Pursel, V. G. (1993). Glutathione concentration during maturation and after fertilization in pig oocytes: relevance to the ability of oocytes to form male pronucleus. Biol. Reprod. 49, 89–94.
Glutathione concentration during maturation and after fertilization in pig oocytes: relevance to the ability of oocytes to form male pronucleus.CrossRef | 1:CAS:528:DyaK3sXkvFahtLY%3D&md5=52e19af116f3120149468a07d0acf995CAS |

Yoshioka, K., Suzuki, C., and Onishi, A. (2008). Defined system for in vitro production of porcine embryos using a single basic medium. J. Reprod. Dev. 54, 208–213.
Defined system for in vitro production of porcine embryos using a single basic medium.CrossRef |

Zhao, X. M., Du, W. H., Wang, D., Hao, H. S., Liu, Y., Qin, T., and Zhu, H. B. (2011). Recovery of mitochondrial function and endogenous antioxidant systems in vitrified bovine oocytes during extended in vitro culture. Mol. Reprod. Dev. 78, 942–950.
Recovery of mitochondrial function and endogenous antioxidant systems in vitrified bovine oocytes during extended in vitro culture.CrossRef | 1:CAS:528:DC%2BC3MXhsVOitr7M&md5=ae110530c2cf0aad7eb5909127442c06CAS |

Zhou, G. B., and Li, N. (2009). Cryopreservation of porcine oocytes: recent advances. Mol. Hum. Reprod. 15, 279–285.
Cryopreservation of porcine oocytes: recent advances.CrossRef | 1:CAS:528:DC%2BD1MXksVSqtLk%3D&md5=00d8637294a0b51c9c7060c9f4046e2aCAS |



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (95 KB) Export Citation Cited By (1)

View Altmetrics