Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Delayed onset of puberty in male offspring from bisphenol A-treated dams is followed by the modulation of gene expression in the hypothalamic–pituitary–testis axis in adulthood

Isabela M. Oliveira A , Renata M. Romano A , Patricia de Campos A , Monica D. Cavallin A , Claudio A. Oliveira B and Marco A. Romano A C
+ Author Affiliations
- Author Affiliations

A Laboratory of Reproductive Toxicology, Department of Pharmacy, State University of Centro-Oeste, Rua Simeao Camargo Varela de Sa, 03, 85040-080, Parana, Brazil.

B Laboratory of Hormonal Dosages, Department of Animal Reproduction, Faculty of Veterinary Medicine, University of Sao Paulo, Av. Prof. Dr Orlando Marques de Paiva, 87, 05508-270, Sao Paulo, Brazil.

C Corresponding author. Email: maromano17@gmail.com

Reproduction, Fertility and Development 29(12) 2496-2505 https://doi.org/10.1071/RD17107
Submitted: 22 October 2016  Accepted: 28 May 2017   Published: 23 June 2017

Abstract

Bisphenol A (BPA) is a synthetic endocrine-disrupting chemical of high prevalence in the environment, which may affect the function of the hypothalamic–pituitary–testis (HPT) axis in adult rats. The aim of the present study was to evaluate whether exposure to BPA during hypothalamic sexual differentiation at doses below the reproductive no observable adverse effect level of the World Health Organization causes changes in the regulation of the HPT axis. For this, 0.5 or 5 mg kg−1 BPA was injected subcutaneously to the mothers from gestational day 18 to postnatal day (PND) 5. In adulthood (PND90), the mRNA expression of genes related to HPT axis was evaluated in hypothalamus, pituitary and testis. Hypothalamic expression of gonadotrophin-releasing hormone (Gnrh) and estrogen receptor 2 (Esr2) mRNA was increased in both BPA-treated groups compared to control group. In the pituitary, follicle stimulating hormone beta subunit (Fshb) and androgen receptor (Ar) mRNA expression was increased compared to control group in rats treated with 0.5 mg kg−1 of BPA, whereas estrogen receptor 1 (Esr1) mRNA expression was only increased in the group treated with 5 mg kg−1 of BPA, compared to control group. In the testis, there was increased expression of FSH receptor (Fshr) and inhibin beta B subunit (Inhbb) transcripts only in rats treated with 0.5 mg kg−1 of BPA. Serum testosterone and LH concentrations were increased in the group treated with 5 mg kg−1 of BPA. The results of the present study demonstrate for the first time that perinatal exposure to low doses of BPA during the critical period of hypothalamic sexual differentiation modifies the activity of the HPT axis in the offspring, with consequences for later life in adult rats.

Additional keywords: endocrine disrupting chemical, perinatal exposure.


References

Abreu, A. P., and Kaiser, U. B. (2016). Pubertal development and regulation. Lancet Diabetes Endocrinol. 4, 254–264.
Pubertal development and regulation.CrossRef |

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. (2002). The initiation and completion of DNA replication in chromosomes. In ‘Molecular Biology of the Cell’. (Garland Science: New York)

Alonso-Magdalena, P., Vieira, E., Soriano, S., Menes, L., Burks, D., Quesada, I., and Nadal, A. (2010). Bisphenol A exposure during pregnancy disrupts glucose homeostasis in mothers and adult male offspring. Environ. Health Perspect. 118, 1243–1250.
Bisphenol A exposure during pregnancy disrupts glucose homeostasis in mothers and adult male offspring.CrossRef | 1:CAS:528:DC%2BC3cXhtFKqsrbO&md5=d506aac139c70557ab33fe41d57fb161CAS |

Bargi-Souza, P., Romano, R. M., Goulart-Silva, F., Brunetto, E. L., and Nunes, M. T. (2015). T(3) rapidly regulates several steps of alpha subunit glycoprotein (CGA) synthesis and secretion in the pituitary of male rats: potential repercussions on TSH, FSH and LH secretion. Mol. Cell. Endocrinol. 409, 73–81.
T(3) rapidly regulates several steps of alpha subunit glycoprotein (CGA) synthesis and secretion in the pituitary of male rats: potential repercussions on TSH, FSH and LH secretion.CrossRef | 1:CAS:528:DC%2BC2MXmsleisr8%3D&md5=fc4a2e2f5f7a9cb54bc44897c3d82267CAS |

Bédécarrats, G. Y., and Kaiser, U. B. (2003). Differential regulation of gonadotropin subunit gene promoter activity by pulsatile gonadotropin-releasing hormone (GnRH) in perifused LβT2 cells: role of GnRH receptor concentration. Endocrinology 144, 1802–1811.
Differential regulation of gonadotropin subunit gene promoter activity by pulsatile gonadotropin-releasing hormone (GnRH) in perifused LβT2 cells: role of GnRH receptor concentration.CrossRef |

Biles, J. E., McNeal, T. P., Begley, T. H., and Hollifield, H. C. (1997). Determination of bisphenol-A in reusable polycarbonate food-contact plastics and migration to food-simulating liquids. J. Agric. Food Chem. 45, 3541–3544.
Determination of bisphenol-A in reusable polycarbonate food-contact plastics and migration to food-simulating liquids.CrossRef | 1:CAS:528:DyaK2sXmtFSgsLo%3D&md5=4da5f99736823a04228e540121ad3e21CAS |

Bjelobaba, I., Janjic, M. M., Kucka, M., and Stojilkovic, S. S. (2015). Cell type-specific sexual dimorphism in rat pituitary gene expression during maturation. Biol. Reprod. 93, 21.
Cell type-specific sexual dimorphism in rat pituitary gene expression during maturation.CrossRef |

Chimento, A., Sirianni, R., Casaburi, I., and Pezzi, V. (2014). Role of estrogen receptors and G protein-coupled estrogen receptor in regulation of hypothalamus–pituitary–testis axis and spermatogenesis. Front. Endocrinol. (Lausanne) 5, 1–8.
Role of estrogen receptors and G protein-coupled estrogen receptor in regulation of hypothalamus–pituitary–testis axis and spermatogenesis.CrossRef |

Farabollini, F., Porrini, S., Seta Della, D., Bianchi, F., and Dessi-Fulgheri, F. (2002). Effects of perinatal exposure to bisphenol A on sociosexual behavior of female and male rats. Environ. Health Perspect. 110, 409–414.
Effects of perinatal exposure to bisphenol A on sociosexual behavior of female and male rats.CrossRef | 1:CAS:528:DC%2BD38XltlWjsbo%3D&md5=20fa0ca514553da23a4f877cd47be672CAS |

Food and Agriculture Organization of the United Nations (FAO)/World Health Organization (WHO) (2010). Reproductive and developmental toxicity of bisphenol A in mammalian species. In ‘Toxicological and Health Aspects of Bisphenol A’. (WHO Press: Geneva.) Available at http://apps.who.int/iris/bitstream/10665/44624/1/97892141564274_eng. pdf [verified 5 June 2017].

Freitag, J., and Döcke, F. (1987). Differential effects of chronic testosterone treatment on the onset of puberty in male rats. Exp. Clin. Endocrinol. Diabetes 90, 361–364.
Differential effects of chronic testosterone treatment on the onset of puberty in male rats.CrossRef | 1:CAS:528:DyaL1cXhs1Wlsbk%3D&md5=3d854c777b6b639dbe6dfae0f02a574aCAS |

Fujimoto, T., Kubo, K., and Aou, S. (2006). Prenatal exposure to bisphenol A impairs sexual differentiation of exploratory behavior and increases depression-like behavior in rats. Brain Res. 1068, 49–55.
Prenatal exposure to bisphenol A impairs sexual differentiation of exploratory behavior and increases depression-like behavior in rats.CrossRef | 1:CAS:528:DC%2BD28Xos1WrtA%3D%3D&md5=85da2239284450b9e79ce262cdaf517eCAS |

Gámez, J. M., Penalba, R., Cardoso, N., Ponzo, O., Carbone, S., Pandolfi, M., Scacchi, P., and Reynoso, R. (2014). Low dose of bisphenol A impairs the reproductive axis of prepuberal male rats. J. Physiol. Biochem. 70, 239–246.
Low dose of bisphenol A impairs the reproductive axis of prepuberal male rats.CrossRef |

Ge, R. S., Chen, G. R., Dong, Q., Akingbemi, B., Sottas, C. M., Santos, M., Sealfon, S. C., Bernard, D. J., and Hardy, M. P. (2007). Biphasic effects of postnatal exposure to diethylhexylphthalate on the timing of puberty in male rats. J. Androl. 28, 513–520.
Biphasic effects of postnatal exposure to diethylhexylphthalate on the timing of puberty in male rats.CrossRef | 1:CAS:528:DC%2BD2sXosVymurk%3D&md5=2b21dfb894524e8ce5713d3e026c040dCAS |

Gerardin, D. C., Pereira, O. C., Kempinas, W. G., Florio, J. C., Moreira, E. G., and Bernardi, M. M. (2005). Sexual behavior, neuroendocrine, and neurochemical aspects in male rats exposed prenatally to stress. Physiol. Behav. 84, 97–104.
Sexual behavior, neuroendocrine, and neurochemical aspects in male rats exposed prenatally to stress.CrossRef | 1:CAS:528:DC%2BD2MXisFyntw%3D%3D&md5=9d7a202bd42fae1302433e1b43c2842eCAS |

Hapgood, J. P., Sadie, H., van Biljon, W., and Ronacher, K. (2005). Regulation of expression of mammalian gonadotrophin-releasing hormone receptor genes. J. Neuroendocrinol. 17, 619–638.
Regulation of expression of mammalian gonadotrophin-releasing hormone receptor genes.CrossRef | 1:CAS:528:DC%2BD2MXhtVKnsbjN&md5=72d2c06cdf03b724a51f77ece9b8eddbCAS |

He, Z., Ferguson, S. A., Cui, L., Greenfield, L. J., and Paule, M. G. (2013). Development of the sexually dimorphic nucleus of the preoptic area and the influence of estrogen-like compounds. Neural Regen. Res. 8, 2763– 2774.
| 1:CAS:528:DC%2BC2cXls1amsrk%3D&md5=3fb3aea0074db8b69430a1d299fd36bbCAS |

Ho, S.-M., Cheong, A., Adgent, M. A., Veevers, J., Suen, A. A., Tam, N. N. C., Leung, Y.-K., Jefferson, W. N., and Williams, C. J. (2017). Environmental factors, epigenetics, and developmental origin of reproductive disorders. Reprod. Toxicol. 68, 85–104.
Environmental factors, epigenetics, and developmental origin of reproductive disorders.CrossRef | 1:CAS:528:DC%2BC28Xht1SlurbM&md5=a442574f880692c23bce6b35f28d73e2CAS |

Hrabovszky, E., Steinhauser, A., Barabas, K., Shughrue, P. J., Petersen, S. L., Merchenthaler, I., and Liposits, Z. (2001). Estrogen receptor-beta immunoreactivity in luteinizing hormone-releasing hormone neurons of the rat brain. Endocrinology 142, 3261–3264.
Estrogen receptor-beta immunoreactivity in luteinizing hormone-releasing hormone neurons of the rat brain.CrossRef | 1:CAS:528:DC%2BD3MXksleltb4%3D&md5=ef4a2ec67c37b5d9f5faa806db2f8bffCAS |

Hu, L., Gustofson, R. L., Feng, H., Ki Leung, P., Mores, N., Krsmanovic, L. Z., and Catt, K. J. (2008). Converse regulatory functions of estrogen receptor-α and -β subtypes expressed in hypothalamic gonadotropin-releasing hormone neurons. Mol. Endocrinol. 22, 2250–2259.
Converse regulatory functions of estrogen receptor-α and -β subtypes expressed in hypothalamic gonadotropin-releasing hormone neurons.CrossRef | 1:CAS:528:DC%2BD1cXht1Sgt7bJ&md5=4310b493385c813303326d139e5de208CAS |

Iurlaro, M., von Meyenn, F., and Reik, W. (2017). DNA methylation homeostasis in human and mouse development. Curr. Opin. Genet. Dev. 43, 101–109.
DNA methylation homeostasis in human and mouse development.CrossRef | 1:CAS:528:DC%2BC2sXivFehtbw%3D&md5=841a8aa00b83349add9fa4f65ae28653CAS |

Jašarević, E., Sieli, P. T., Twellman, E. E., Welsh, T. H., Schachtman, T. R., Roberts, R. M., Geary, D. C., and Rosenfeld, C. S. (2011). Disruption of adult expression of sexually selected traits by developmental exposure to bisphenol A. Proc. Natl. Acad. Sci. 108, 11715–11720.
Disruption of adult expression of sexually selected traits by developmental exposure to bisphenol A.CrossRef |

Jeong, K.-H., and Kaiser, U. B. (2006). Gonadotropin-releasing hormone regulation of gonadotropin biosynthesis and secretion. In ‘Knobil and Neill’s Physiology of Reproduction’. Volume 1. 3rd edn. (Eds J. D. Neill, T. M. Plant, D. W. Pfaff, J. R. G. Challis, D. M. de Kretser, J. S. Richards, and P. M. Wassarman.) pp. 1635–1701. (Academic Press: St Louis.)

Kaiser, U. B., Jakubowiak, A., Steinberger, A., and Chin, W. W. (1997). Differential effects of gonadotropin-releasing hormone (GnRH) pulse frequency on gonadotropin subunit and GnRH receptor messenger ribonucleic acid levels in vitro. Endocrinology 138, 1224–1231.
Differential effects of gonadotropin-releasing hormone (GnRH) pulse frequency on gonadotropin subunit and GnRH receptor messenger ribonucleic acid levels in vitro.CrossRef | 1:CAS:528:DyaK2sXht1ymsrY%3D&md5=984750a4bb890d5f8c7df8d88b780a24CAS |

Kalra, P. S., and Kalra, S. P. (1977). Circadian periodicities of serum androgens, progesterone, gonadotropins and luteinizing hormone-releasing hormone in male rats: the effects of hypothalamic deafferentation, castration and adrenalectomy. Endocrinology 101, 1821–1827.
Circadian periodicities of serum androgens, progesterone, gonadotropins and luteinizing hormone-releasing hormone in male rats: the effects of hypothalamic deafferentation, castration and adrenalectomy.CrossRef | 1:CAS:528:DyaE1cXnt1Wltg%3D%3D&md5=1fc3aa947133c9b0648aeac51d087b35CAS |

Kanasaki, H., Oride, A., Mijiddorj, T., Sukhbaatar, U., and Kyo, S. (2017). How is GnRH regulated in GnRH-producing neurons? Studies using GT1-7 cells as a GnRH-producing cell model. Gen. Comp. Endocrinol. 247, 138–142.
How is GnRH regulated in GnRH-producing neurons? Studies using GT1-7 cells as a GnRH-producing cell model.CrossRef | 1:CAS:528:DC%2BC2sXhvVentb4%3D&md5=5f6d586cc8d887c09002bdb8e68ff410CAS |

Korenbrot, C. C., Huhtaniemi, I. T., and Weiner, R. I. (1977). Preputial separation as an external sign of pubertal development in the male rat. Biol. Reprod. 17, 298–303.
Preputial separation as an external sign of pubertal development in the male rat.CrossRef | 1:CAS:528:DyaE2sXlsV2gtbY%3D&md5=5f3b0e99f6ffb42ded5bd698c1d9e9c4CAS |

Lassen, T. H., Frederiksen, H., Jensen, T. K., Petersen, J. H., Joensen, U. N., Main, K. M., Skakkebaek, N. E., Juul, A., Jorgensen, N., and Andersson, A. M. (2014). Urinary bisphenol A levels in young men: association with reproductive hormones and semen quality. Environ. Health Perspect. 122, 478–484.
Urinary bisphenol A levels in young men: association with reproductive hormones and semen quality.CrossRef | 1:CAS:528:DC%2BC2MXjt1Ors7c%3D&md5=ffb03af831899fa3e9e4848bd640758cCAS |

Li, D., Zhou, Z., Qing, D., He, Y., Wu, T., Miao, M., Wang, J., Weng, X., Ferber, J. R., Herrinton, L. J., Zhu, Q., Gao, E., Checkoway, H., and Yuan, W. (2010). Occupational exposure to bisphenol-A (BPA) and the risk of self-reported male sexual dysfunction. Hum. Reprod. 25, 519–527.
Occupational exposure to bisphenol-A (BPA) and the risk of self-reported male sexual dysfunction.CrossRef | 1:CAS:528:DC%2BC3cXntlWltg%3D%3D&md5=0430f627d1c211a94b816d9773abc27dCAS |

Li, D. K., Zhou, Z., Miao, M., He, Y., Wang, J., Ferber, J., Herrinton, L. J., Gao, E., and Yuan, W. (2011). Urine bisphenol-A (BPA) level in relation to semen quality. Fertil. Steril. 95, 625–30.e4.
Urine bisphenol-A (BPA) level in relation to semen quality.CrossRef | 1:CAS:528:DC%2BC3MXpslyquw%3D%3D&md5=917d4f5a8edafbb04c34955491618ec7CAS |

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method. Methods 25, 402–408.
Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method.CrossRef | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=27001fc4d390214adec9d2e6245c9fd6CAS |

McCarthy, M. M., and Arnold, A. P. (2011). Reframing sexual differentiation of the brain. Nat. Neurosci. 14, 677–683.
Reframing sexual differentiation of the brain.CrossRef | 1:CAS:528:DC%2BC3MXmsFyqtb8%3D&md5=127bef3bf6ca69411fdbdf1f3ed9d1d3CAS |

Mileva, G., Baker, S. L., Konkle, A. T. M., and Bielajew, C. (2014). Bisphenol-A: epigenetic reprogramming and effects on reproduction and behavior. Int. J. Environ. Res. Public Health 11, 7537–7561.
Bisphenol-A: epigenetic reprogramming and effects on reproduction and behavior.CrossRef | 1:CAS:528:DC%2BC2cXhslensbbP&md5=8ea2e24609ad7d3148c8e71a229c1c55CAS |

Nagirnaja, L., Rull, K., Uusküla, L., Hallast, P., Grigorova, M., and Laan, M. (2010). Genomics and genetics of gonadotropin beta-subunit genes: unique FSHB and duplicated LHB/CGB loci. Mol. Cell. Endocrinol. 329, 4–16.
Genomics and genetics of gonadotropin beta-subunit genes: unique FSHB and duplicated LHB/CGB loci.CrossRef | 1:CAS:528:DC%2BC3cXht1Srur%2FP&md5=3e38b49ba3d6a4bb408032159bd7d409CAS |

Negri-Cesi, P. (2015). Bisphenol A interaction with brain development and functions. Dose Response 13, 1–12.
Bisphenol A interaction with brain development and functions.CrossRef | 1:CAS:528:DC%2BC2MXhvFGqsLvP&md5=9dc61a806d53ace17a02cb70008089dcCAS |

Nesan, D., and Kurrasch, D. M. (2016). Genetic programs of the developing tuberal hypothalamus and potential mechanisms of their disruption by environmental factors. Mol. Cell. Endocrinol. 438, 3–17.
Genetic programs of the developing tuberal hypothalamus and potential mechanisms of their disruption by environmental factors.CrossRef | 1:CAS:528:DC%2BC28Xhs1ygs7bE&md5=875004e4393cc250c9f56e8188ad11d8CAS |

Norman, A. W., and Henry, H. L. (2014). ‘Hormones.’ (Academic Press: San Diego.)

O’Connor, A. E., and De Kretser, D. M. (2004). Inhibins in normal male physiology. Semin. Reprod. Med. 22, 177–185.
Inhibins in normal male physiology.CrossRef | 1:CAS:528:DC%2BD2cXnvFWgurk%3D&md5=5daa46ba6e561189c95992fbd7246b7aCAS |

O’Hara, L., Curley, M., Tedim Ferreira, M., Cruickshanks, L., Milne, L., and Smith, L. B. (2015). Pituitary androgen receptor signalling regulates prolactin but not gonadotrophins in the male mouse. PLoS One 10, e0121657.
Pituitary androgen receptor signalling regulates prolactin but not gonadotrophins in the male mouse.CrossRef |

Ojeda, S. R., and Skinner, M. K. (2006). Puberty in the Rat In ‘Knobil and Neill’s Physiology of Reproduction’. Volume 1. 3rd edn. (Eds J. D. Neill, T. M. Plant, D. W. Pfaff, J. R. G. Challis, D. M. de Kretser, J. S. Richards, and P. M. Wassarman.) pp. 2061–2126. (Academic Press: St Louis.)

Pakarinen, P., Vihko, K., Voutilainen, R., and Huhtaniemi, I. (1990). Differential response of luteinizing hormone receptor and steroidogenic enzyme gene expression to human chorionic gonadotropin stimulation in the neonatal and adult rat testis. Endocrinology 127, 2469–2474.
Differential response of luteinizing hormone receptor and steroidogenic enzyme gene expression to human chorionic gonadotropin stimulation in the neonatal and adult rat testis.CrossRef | 1:CAS:528:DyaK3MXnsFQ%3D&md5=2bfabf9b4a0156f95479f132590efaa3CAS |

Pereira, O. (2003). Endocrine disruptors and hypothalamic sexual differentiation. Annu. Rev. Biomed. Sci. 5, 87–94.
| 1:CAS:528:DC%2BD2cXjslOqtLY%3D&md5=0e0f34cbb23d83969df8fc586ed8c4f4CAS |

Peretz, J., Vrooman, L., Ricke, W. A., Hunt, P. A., Ehrlich, S., Hauser, R., Padmanabhan, V., Taylor, H. S., Swan, S. H., VandeVoort, C. A., and Flaws, J. A. (2014). Bisphenol A and reproductive health: update of experimental and human evidence, 2007–2013. Environ. Health Perspect. 122, 775–786.

Qiu, L. L., Wang, X., Zhang, X. H., Zhang, Z., Gu, J., Liu, L., Wang, Y., Wang, X., and Wang, S. L. (2013). Decreased androgen receptor expression may contribute to spermatogenesis failure in rats exposed to low concentration of bisphenol A. Toxicol. Lett. 219, 116–124.
Decreased androgen receptor expression may contribute to spermatogenesis failure in rats exposed to low concentration of bisphenol A.CrossRef | 1:CAS:528:DC%2BC3sXmtlaqt7c%3D&md5=9442d2678c34b1e4c7453637445be888CAS |

Ramos, J. G., Varayoud, J., Kass, L., Rodriguez, H., Costabel, L., Munoz-De-Toro, M., and Luque, E. H. (2003). Bisphenol A induces both transient and permanent histofunctional alterations of the hypothalamic–pituitary–gonadal axis in prenatally exposed male rats. Endocrinology 144, 3206–3215.
Bisphenol A induces both transient and permanent histofunctional alterations of the hypothalamic–pituitary–gonadal axis in prenatally exposed male rats.CrossRef | 1:CAS:528:DC%2BD3sXkvF2ktbs%3D&md5=b407a9fb4f4f9710ffdb23139fc86eddCAS |

Reznikov, A. G., and Tarasenko, L. V. (2007). Hormonal protection of gender-related peculiarities of testosterone metabolism in the brain of prenatally stressed rats. Neuroendocrinol. Lett. 28, 671–674.
| 1:CAS:528:DC%2BD1cXhtVOht78%3D&md5=3b38879dc4d5d584a5622b7f41cbfc86CAS |

Rhees, R. W., Shryne, J. E., and Gorski, R. A. (1990a). Onset of the hormone‐sensitive perinatal period for sexual differentiation of the sexually dimorphic nucleus of the preoptic area in female rats. J. Neurobiol. 21, 781–786.
Onset of the hormone‐sensitive perinatal period for sexual differentiation of the sexually dimorphic nucleus of the preoptic area in female rats.CrossRef | 1:CAS:528:DyaK3cXlvVCqsL8%3D&md5=1d0ce3b1b42324a3665c6ad499bc8646CAS |

Rhees, R. W., Shryne, J. E., and Gorski, R. A. (1990b). Termination of the hormone-sensitive period for differentiation of the sexually dimorphic nucleus of the preoptic area in male and female rats. Brain Res. Dev. Brain Res. 52, 17–23.
Termination of the hormone-sensitive period for differentiation of the sexually dimorphic nucleus of the preoptic area in male and female rats.CrossRef | 1:CAS:528:DyaK3cXhslamsLg%3D&md5=c64b386c4ae5079dc25264fca8df7b69CAS |

Richter, C. A., Birnbaum, L. S., Farabollini, F., Newbold, R. R., Rubin, B. S., Talsness, C. E., Vandenbergh, J. G., Walser-Kuntz, D. R., and vom Saal, F. S. (2007). In vivo effects of bisphenol A in laboratory rodent studies. Reprod. Toxicol. 24, 199–224.
In vivo effects of bisphenol A in laboratory rodent studies.CrossRef | 1:CAS:528:DC%2BD2sXhtVCisL%2FF&md5=e29ccef3d291811ba226fc58ac0ab017CAS |

Rissland, O. S. (2017). The organization and regulation of mRNA–protein complexes. Wiley Interdiscip. Rev. RNA 8, e1369.
The organization and regulation of mRNA–protein complexes.CrossRef |

Rubin, B. S., and Soto, A. M. (2009). Bisphenol A: perinatal exposure and body weight. Mol. Cell. Endocrinol. 304, 55–62.
Bisphenol A: perinatal exposure and body weight.CrossRef | 1:CAS:528:DC%2BD1MXls1yls7c%3D&md5=4ab276ce81ae79efcad2f6a1a6163c9fCAS |

Rubin, B. S., Murray, M. K., Damassa, D. A., King, J. C., and Soto, A. M. (2001). Perinatal exposure to low doses of bisphenol A affects body weight, patterns of estrous cyclicity, and plasma LH levels. Environ. Health Perspect. 109, 675–680.
Perinatal exposure to low doses of bisphenol A affects body weight, patterns of estrous cyclicity, and plasma LH levels.CrossRef | 1:CAS:528:DC%2BD3MXmtFOjsb8%3D&md5=2a0927a3f8cd98eb59e296b8be9d2df0CAS |

Salian, S., Doshi, T., and Vanage, G. (2009). Neonatal exposure of male rats to bisphenol A impairs fertility and expression of Sertoli cell junctional proteins in the testis. Toxicology 265, 56–67.
Neonatal exposure of male rats to bisphenol A impairs fertility and expression of Sertoli cell junctional proteins in the testis.CrossRef | 1:CAS:528:DC%2BD1MXht1Ogur7I&md5=8e1f0b8db8b713864b1b762d7dfcc8d1CAS |

Stoker, T. E., Parks, L. G., Gray, L. E., and Cooper, R. L. (2000). Endocrine-disrupting chemicals: prepubertal exposures and effects on sexual maturation and thyroid function in the male rat. A focus on the EDSTAC recommendations. Endocrine Disrupter Screening and Testing Advisory Committee. Crit. Rev. Toxicol. 30, 197–252.
Endocrine-disrupting chemicals: prepubertal exposures and effects on sexual maturation and thyroid function in the male rat. A focus on the EDSTAC recommendations. Endocrine Disrupter Screening and Testing Advisory Committee.CrossRef | 1:CAS:528:DC%2BD3cXis1ChsrY%3D&md5=4509bb6648d6f34c46b75cff5658a577CAS |

Temple, J. L., Laing, E., Sunder, A., and Wray, S. (2004). Direct action of estradiol on gonadotropin-releasing hormone-1 neuronal activity via a transcription-dependent mechanism. J. Neurosci. 24, 6326–6333.
Direct action of estradiol on gonadotropin-releasing hormone-1 neuronal activity via a transcription-dependent mechanism.CrossRef | 1:CAS:528:DC%2BD2cXmtFersb4%3D&md5=7774812305371d03b7ff841c945f6cc9CAS |

Troppmann, B., Kleinau, G., Krause, G., and Gromoll, J. (2013). Structural and functional plasticity of the luteinizing hormone/choriogonadotrophin receptor. Hum. Reprod. Update 19, 583–602.
Structural and functional plasticity of the luteinizing hormone/choriogonadotrophin receptor.CrossRef | 1:CAS:528:DC%2BC3sXht1yrs7nP&md5=80c03b544ca605109497b5fff7ad27c7CAS |

Vandenberg, L. N., Maffini, M. V., Sonnenschein, C., Rubin, B. S., and Soto, A. M. (2009). Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocr. Rev. 30, 75–95.
Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption.CrossRef | 1:CAS:528:DC%2BD1MXjt1eqsr4%3D&md5=944dafb938e26d060eeaacb84b0f008dCAS |

Walker, W. H., and Cheng, J. (2005). FSH and testosterone signaling in Sertoli cells. Reproduction 130, 15–28.
FSH and testosterone signaling in Sertoli cells.CrossRef | 1:CAS:528:DC%2BD2MXnt1ynsrk%3D&md5=84b4b4965952ef529ce03b4214fa233bCAS |

Ward, I. L., and Weisz, J. (1980). Maternal stress alters plasma testosterone in fetal males. Science 207, 328–329.
Maternal stress alters plasma testosterone in fetal males.CrossRef | 1:CAS:528:DyaL3cXptFKksg%3D%3D&md5=b6643b35c85e7bfe20c837027781136cCAS |

Wisner, J. R., Stalvey, J. R. D., and Warren Iii, D. W. (1983). Delay in the age of balano-preputial skinfold cleavage and alterations in serum profiles of testosterone, 5α-androstane-3α, 17β-diol, and gonadotropins in adult rats treated during puberty with luteinizing hormone releasing hormone. Steroids 41, 443–454.
Delay in the age of balano-preputial skinfold cleavage and alterations in serum profiles of testosterone, 5α-androstane-3α, 17β-diol, and gonadotropins in adult rats treated during puberty with luteinizing hormone releasing hormone.CrossRef | 1:CAS:528:DyaL2cXhvVSkug%3D%3D&md5=367a7bc0538834b218a9c8a47e46ba61CAS |

Wisniewski, P., Romano, R. M., Kizys, M. M., Oliveira, K. C., Kasamatsu, T., Giannocco, G., Chiamolera, M. I., Dias-da-Silva, M. R., and Romano, M. A. (2015). Adult exposure to bisphenol A (BPA) in Wistar rats reduces sperm quality with disruption of the hypothalamic–pituitary–testicular axis. Toxicology 329, 1–9.
Adult exposure to bisphenol A (BPA) in Wistar rats reduces sperm quality with disruption of the hypothalamic–pituitary–testicular axis.CrossRef | 1:CAS:528:DC%2BC2MXltVOjuw%3D%3D&md5=7f102f588ec8214a3a7de86408b48f41CAS |

Wright, E. C., Johnson, S. A., Hao, R., Kowalczyk, A. S., Greenberg, G. D., Ordoñes Sanchez, E., Laman-Maharg, A., Trainor, B. C., and Rosenfeld, C. S. (2017). Exposure to extrinsic stressors, social defeat or bisphenol A, eliminates sex differences in DNA methyltransferase expression in the amygdala. J. Neuroendocrinol. 29, 1–9.
Exposure to extrinsic stressors, social defeat or bisphenol A, eliminates sex differences in DNA methyltransferase expression in the amygdala.CrossRef |

Xi, W., Lee, C. K., Yeung, W. S., Giesy, J. P., Wong, M. H., Zhang, X., Hecker, M., and Wong, C. K. (2011). Effect of perinatal and postnatal bisphenol A exposure to the regulatory circuits at the hypothalamus–pituitary–gonadal axis of CD-1 mice. Reprod. Toxicol. 31, 409–417.
Effect of perinatal and postnatal bisphenol A exposure to the regulatory circuits at the hypothalamus–pituitary–gonadal axis of CD-1 mice.CrossRef | 1:CAS:528:DC%2BC3MXmvFWmtLc%3D&md5=83e9b926c1412eede6867d760c4de563CAS |

Xu, X. H., Zhang, J., Wang, Y. M., Ye, Y. P., and Luo, Q. Q. (2010). Perinatal exposure to bisphenol-A impairs learning-memory by concomitant down-regulation of N methyl-D-aspartate receptors of hippocampus in male offspring mice. Horm. Behav. 58, 326–333.
Perinatal exposure to bisphenol-A impairs learning-memory by concomitant down-regulation of N methyl-D-aspartate receptors of hippocampus in male offspring mice.CrossRef | 1:CAS:528:DC%2BC3cXmslSgtbw%3D&md5=d27c9d46513e38b10c25069c9366e782CAS |



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (51 KB) Export Citation Cited By (2)

View Altmetrics