Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire

Articles citing this paper

Reaction times and burning rates for wind tunnel headfires

Ralph M. Nelson, Jr.
12(2) pp.195 - 211


26 articles found in Crossref database.

The Role of Fuel Bed Geometry and Wind on the Burning Rate of Porous Fuels
McAllister Sara
Frontiers in Mechanical Engineering. 2019 5
An Investigation of Oxygen Availability in Spreading Fires
Howell Alexandra N., Belmont Erica L., McAllister Sara S., Finney Mark A.
Fire Technology. 2023 59(4). p.2147
Assessing crown fire potential in coniferous forests of western North America: a critique of current approaches and recent simulation studies
Cruz Miguel G., Alexander Martin E.
International Journal of Wildland Fire. 2010 19(4). p.377
Testing woody fuel consumption models for application in Australian southern eucalypt forest fires
Hollis J.J., Matthews S., Ottmar R.D., Prichard S.J., Slijepcevic A., Burrows N.D., Ward B., Tolhurst K.G., Anderson W.R., Gould J.S.
Forest Ecology and Management. 2010 260(6). p.948
Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires (2020)
Cruz Miguel G., Alexander Martin E.
The Effect of Wind on Burning Rate of Wood Cribs
McAllister Sara, Finney Mark
Fire Technology. 2016 52(4). p.1035
Simulated fire behaviour in young, postfire lodgepole pine forests
Nelson Kellen N., Turner Monica G., Romme William H., Tinker Daniel B.
International Journal of Wildland Fire. 2017 26(10). p.852
The effects of slope and fuel bed width on laboratory fire behaviour
Dupuy J.-L., Maréchal J., Portier D., Valette J.-C.
International Journal of Wildland Fire. 2011 20(2). p.272
Modelling the effects of surface and crown fire behaviour on serotinous cone opening in jack pine and lodgepole pine forests
Alexander M. E., Cruz M. G.
International Journal of Wildland Fire. 2012 21(6). p.709
Development of a model system to predict wildfire behaviour in pine plantations
Cruz Miguel G., Alexander Martin E., Fernandes Paulo A.M.
Australian Forestry. 2008 71(2). p.113
The influence of fuelbed properties on moisture drying rates and timelags of longleaf pine litter
Nelson Ralph M., Hiers J. Kevin
Canadian Journal of Forest Research. 2008 38(9). p.2394
Burning Rates of Wood Cribs with Implications for Wildland Fires
McAllister Sara, Finney Mark
Fire Technology. 2016 52(6). p.1755
Modelling drying processes of fuelbeds of Scots pine needles with initial moisture content above the fibre saturation point by two-phase models
Jin Sen, Chen Pengyu
International Journal of Wildland Fire. 2012 21(4). p.418
Exploring fire response to high wind speeds: fire rate of spread, energy release and flame residence time from fires burned in pine needle beds under winds up to 27 ms−1
Butler Bret, Quarles Steve, Standohar-Alfano Christine, Morrison Murray, Jimenez Daniel, Sopko Paul, Wold Cyle, Bradshaw Larry, Atwood Loren, Landon Justin, O'Brien Joseph, Hornsby Benjamin, Wagenbrenner Natalie, Page Wesley
International Journal of Wildland Fire. 2020 29(1). p.81
Mass fire behavior created by extensive tree mortality and high tree density not predicted by operational fire behavior models in the southern Sierra Nevada
Stephens Scott L., Bernal Alexis A., Collins Brandon M., Finney Mark A., Lautenberger Chris, Saah David
Forest Ecology and Management. 2022 518 p.120258
Ignition of Forest Fires by Cigarette Butts: Using Pinus massoniana Needles as an Example
Zhang Yunlin, Tian Lingling
Fire. 2024 7(3). p.65
Heat transfer—A review of 2003 literature
Goldstein R.J., Ibele W.E., Patankar S.V., Simon T.W., Kuehn T.H., Strykowski P.J., Tamma K.K., Heberlein J.V.R., Davidson J.H., Bischof J., Kulacki F.A., Kortshagen U., Garrick S., Srinivasan V.
International Journal of Heat and Mass Transfer. 2006 49(3-4). p.451
A biophysical process model of tree mortality in surface fires
Michaletz S. T., Johnson E. A.
Canadian Journal of Forest Research. 2008 38(7). p.2013
Investigation of the role of bulk properties and in-bed structure in the flow regime of buoyancy-dominated flame spread in porous fuel beds
Campbell-Lochrie Zakary, Walker-Ravena Carlos, Gallagher Michael, Skowronski Nicholas, Mueller Eric V., Hadden Rory M.
Fire Safety Journal. 2021 120 p.103035
Trait phenology and fire seasonality co‐drive seasonal variation in fire effects on tree crowns
Bison Nicole N., Partelli‐Feltrin Raquel, Michaletz Sean T.
New Phytologist. 2022 234(5). p.1654
Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires (2019)
Cruz Miguel G., Alexander Martin E.
Analytical Model for Determining Thermal Radiance of Fire Plumes with Implication to Wildland Fire
Wang H.-H.
Combustion Science and Technology. 2009 181(2). p.245
Behind the flaming zone: Predicting woody fuel consumption in eucalypt forest fires in southern Australia
Hollis J.J., Matthews S., Anderson W.R., Cruz M.G., Burrows N.D.
Forest Ecology and Management. 2011 261(11). p.2049
Fire spread probabilities for experimental beds composed of mixedwood boreal forest fuels
Dickinson M.B., Johnson E.A., Artiaga R.
Canadian Journal of Forest Research. 2013 43(4). p.321
Predicting the ignition of crown fuels above a spreading surface fire. Part I: model idealization
Cruz Miguel G., Butler Bret W., Alexander Martin E., Forthofer Jason M., Wakimoto Ronald H.
International Journal of Wildland Fire. 2006 15(1). p.47
The effect of silvicultural treatments on fire behaviour potential in radiata pine plantations of South Australia
Cruz M.G., Alexander M.E., Plucinski M.P.
Forest Ecology and Management. 2017 397 p.27

Committee on Publication Ethics


Abstract Export Citation Get Permission