International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE

Eye-safe lidar measurements for detection and investigation of forest-fire smoke

Andrei B. Utkin A B , Armando Fernandes C , Alexander Lavrov A D and Rui Vilar C E
+ Author Affiliations
- Author Affiliations

A INOV–Inesc Inovação, Rua Alves Redol 9, Lisbon 1000-029, Portugal.

B Telephone: +351 213 100 426; fax: +351 213 100 401; email: andrei.utkin@inov.pt

C Departamento de Engenharia de Materiais, Instituto Superior Técnico, Av. Rovisco Pais 1, Lisbon 1049-001, Portugal.

D On leave from: Russian Science Center ‘Applied Chemistry’, pr. Dobrolubova 14, St Petersburg 197 198, Russia.

E Corresponding author. Telephone: +351 218 418 120; fax: +351 218 418 121; email: rui.vilar@ist.utl.pt

International Journal of Wildland Fire 13(4) 401-412 https://doi.org/10.1071/WF04009
Submitted: 9 February 2004  Accepted: 21 September 2004   Published: 15 December 2004

Abstract

The problem of eye safety in lidar-assisted wildland fire detection and investigation is considered as a problem of reduction of the hazard range within which the laser beam is dangerous for direct eye exposure. The dependence of this hazard range on the lidar characteristics is examined and possible eye-safety measures discussed. The potential of one of the cheapest ways of providing eye safety, which is based on placing the lidar in an elevated position and using a 1064-nm laser beam with increased divergence, is also investigated experimentally. It is demonstrated that a lidar system operating with wider beams maintains its ability to detect smoke plumes efficiently. Providing eye-safe conditions allows scanning of the internal 3D structure of smoke plumes in the vicinity of fire plots. Examples are given as layer-by-layer smoke concentration plots on the topographic map.

Additional keywords: Gestosa; remote sensing.


References


Andreucci F , Arbolino MV (1993) A study on forest fire automatic detection systems. 2. Smoke plume detection performance. Nuovo Cimento  16C, 51–65.


ANSI (1993) ‘American National Standard for the Safe Use of Lasers: ANSI Z-136.1.’ Table 5, Maximum Permissible Exposure (MPE) for Ocular Exposure. (American National Standards Institute, Laser Institute of America: Orlando)

Barducci A, Guzzi D, Marcoionni P , Pippi I (2002) Infrared detection of active fires and burnt areas: theory and observations. Infrared Physics and Technology  43, 119–125.
CrossRef |

Bélanger B, Fougéres A, Talbot M , Roy G (2000) Industrial fiber lidar: some applications. Proceedings of SPIE  4087, 981–988.

CrossRef |

Benech B, Dinh PV, Ezcurra A , Lesne JL (1988) Investigation of a 1000-MW smoke plume by means of a 1.064 μm lidar. II. Determination of diffusion characteristics of the plume particles. Atmospheric Environment  22, 1071–1084.
CrossRef |

Brown de Colstoun F, Chambaret JP, Chambaret Y, Saige VAG, Moscovici J-CM (1990) Station for detecting and locating through laser beams an object or a substance likely to diffuse back at least one part of the incident laser ray and system for sensing a substance such as smoke in particular of a fire such as a forest fire. United States Patent n. US4893026 of 9 January 1990.

Carnuth W , Reiter R (1986) Cloud extinction profile measurements by lidar using Klett’s inversion method. Applied Optics  25, 2899–2907.


Carnuth W , Trickl T (1992) Development of an eye-safe infrared aerosol lidar. Proceedings of SPIE  1714, 192–198.

CrossRef |

Duck TJ, Sipler DP, Salah JE, Meriwether JW (2001) Monostatic lidar at f/200: a new instrument at Millstone Hill/MIT Haystack Observatory. In ‘Advances in laser remote sensing’. (Eds A Dabas, C Loth, J Pelon) pp. 73–76. (Ecole Polytechnique: Palaiseau Cedex, France). [A schematic depicting the layout of lidar’s optical and electronic components is available at http://aolab.phys.dal.ca/~tomduck/mitlidar] [Verified 23 November 2004]

Eberhard WL (1983) Eye-safe tracking of oil fog plumes by UV lidar. Applied Optics  22, 2282–2285.


Eloranta EW, Ponsardin P (2001) ‘A high spectral resolution lidar designed for unattended operation in the Arctic.’ Abstracts of Optical Society of America topical meeting on Optical Remote Sensing of the Atmosphere, 5–8 February 2001, Coeur d’Alene, Idaho. Available at http://lidar.ssec.wisc.edu/papers/conferences/osa_arctic_2001.pdf [Verified 23 November 2004]

Ezcurra E, Bénech B, Dinh PV , Lesne JL (1985) Investigation of a 1000 MW smoke plume by means of a 1.064 mm lidar. I. Lidar calibration procedure from in situ aerosol measurements and vertical laser shorts. Atmospheric Environment  19, 1125–1133.
CrossRef |

Fernald FG (1984) Analysis of atmospheric lidar observations: some comments. Applied Optics  23, 652–653.


Foy BR, McVey BD, Petrin RR, Tiee JJ , Wilson CW (2001) Remote mapping of vegetation and geological features by lidar in the 9–11-mm region. Applied Optics  40, 4344–4352.


Harms J, Lahmann W , Weitkamp C (1978) Geometrical compression of lidar return signals. Applied Optics  17, 1131–1135.


Harrell-Klein S, Wilcox WE, Killinger DK, Rines GA , Schwarz RA (1995) High-power eye-safe 1.57-mm optical parametric oscillator (OPO) lidar for atmospheric boundary-layer measurements. Proceedings of SPIE  2366, 354–357.

CrossRef |

Hellström J, Karlsson G, Pasiskevicius V , Laurell F (2001) Optical parametric amplification in periodically poled KTiOPO4 seeded by an Er-Yb:glass microchip laser. Optics Letters  26, 352–354.


Huffaker RM , Reveley PA (1998) Solid-state coherent lidar wind measurement systems. Pure and Applied Optics  7, 863–873.
CrossRef |

Hutchinson JA, Trussell CW, Allik TH, Hamlin SJ, McCarthy JC, Bowers MS , Jack M (1999) Multifunction laser radar. Proceedings of SPIE  3707, 222–233.

CrossRef |

Karning H, Ruger JF , Weispfenning M (1998) Concept and design of a multiple-function laser (MFL). Proceedings of SPIE  3436, 433–440.

CrossRef |

Kent GS , Hansen GM (1999) Scanning lidar with a coupled radar safety system. Applied Optics  38, 6383–6387.


Klett JD (1981) Stable analytical inversion solution for processing lidar returns. Applied Optics  20, 211–220.


Klett JD (1983) Lidar calibration and extinction coefficients. Applied Optics  22, 514–515.


Klett JD (1985) Lidar inversion with variable backscatter/extinction ratios. Applied Optics  24, 1638–1643.


Laseroptronix (2003) ‘LaserAce 1000.’ (Laseroptronix: Valentuna, Sweden). Available at http://www.laseroptronix.com/dispu/LaserAce10001.pdf [Verified 23 November 2004]

Lavrov A , Vilar R (1999) Application of lidar at 1.54 micron for forest fire detection. Proceedings of SPIE  3868, 473–477.

CrossRef |

Lavrov A, Utkin AB, Vilar R , Fernandes A (2003) Application of lidar in ultraviolet, visible and infrared ranges for early forest fire detection. Applied Physics. B, Lasers and Optics  76, 87–95.
CrossRef |

Matsumoto M , Takeuchi N (1994) Effects of misestimated far-end boundary values on two common lidar inversion solutions. Applied Optics  33, 6451–6456.


Measures MR (1984) ‘Laser remote sensing.’ (Wiley: New York)

Moorgawa A, Michaelis MM, Diab RD, Anderson J , Kuppen M. (2000) The Durban atmospheric LIDAR program. Proceedings of SPIE  4065, 324–337.

CrossRef |

NASA (1989) NASA patter. Eye-safe lidar. Applied Optics  28, 4948.


Patten M (1995) ‘More than meets the eye: Problems with laser light shows.’ ASRS Directline 7, 1. Available at http://asrs.arc.nasa.gov/directline_issues/dl7_laser.htm [Verified 23 November 2004]

Patterson EM, Roberts DW , Gimmestad GG (1989) Initial measurements using a 1.54-mm eyesafe Raman shifter lidar. Applied Optics  28, 4978–4981.


Pershin S, Hao WM, Susott RA, Babbitt RE , Riebau A (1999) Estimation of emission from Idaho biomass fires using compact eye-safe diode lidar. Proceedings of SPIE  3757, 60–66.


Q-Peak (1998) ‘High-energy, eyesafe lidar for long-range, high-resolution aerosol detection.’ Final report on NASA Small Business Innovative Research (SBIR) program, Contract NAS1–20476 (Q-Peak Inc.: Bedford, MA). Available at http://www.qpeak.com/Compsbir/B1897elid.htm [Verified 23 November 2004]

Rauste Y, Herland E, Frelander H, Soini K, Kuoremaki T , Ruokari R (1997) Satellite-based forest fire detection for fire control in boreal forests. International Journal of Remote Sensing  18, 2641–2656.
CrossRef |

Ready JF (1997) Properties of laser light. In ‘Industrial applications of lasers’. 2nd edn. pp. 31–63. (Academic Press: San Diego)

Riaño D, Meier E, Allgöwer B, Chuvieco E (2002) Generation of vegetation height, vegetation cover and crown bulk density from airborne laser scanning data. In ‘Forest fire research & wildland fire safety: Proceedings of the IV International Conference on Forest Fire Research, Luso, Portugal’. (Ed. DX Viegas) p. 122. (Millpress: Rotterdam)

Saito Y, Saito R, Kawahara TD, Nomura A , Takeda S (2000) Development and performance characteristics of laser-induced fluorescence imaging lidar for forestry applications. Forest Ecology and Management  128, 129–137.
CrossRef |

Spinhirne JD (1993) Micro pulse laser radar. United States Patent n. US5241315 of 31 August 1993.

Stith LS, Radke LF , Hobbs PV (1981) Particle emission and the production of ozone and nitrogen oxides from the burning of forest slash. Atmospheric Environment  15, 73–82.


Streicher J , Werner C (1999) Smoke detection using a compact and eye safe lidar. Proceedings of SPIE  3707, 590–598.


Takeuchi A, Saito Y, Kawahara TD, Nomura A , Suzuki T (2001) Possibility of disease process monitoring of plants by laser-induced fluorescence method: development and evaluation of LIF measurement systems. Proceedings of SPIE  4153, 22–29.


Thomas PJ , Nixon O (1993) Near-infrared fire detection concept. Applied Optics  32, 5348–5355.


Toposys (2003) ‘TopoSys GmbH – Used lidar sensor system Falcon I and Falcon II.’ (Toposys–Topographische Systemdaten GmbH: Ravensburg, Germany). Available at http://www.toposys.de/topsys-de/unternehmen/images/aktuellespdf/PressReleaseUsedFalcon-EN.pdf [Verified 23 November 2004]

Utkin AB, Lavrov AV, Costa L, Simões F , Vilar R (2002a) Detection of small forest fires by lidar. Applied Physics. B, Lasers and Optics  74, 77–83.
CrossRef |

Utkin AB, Fernandes A, Simões F, Vilar R, Lavrov A (2002b) Forest-fire detection by means of lidar. In ‘Forest fire research and wildland fire safety: Proceedings of the IV International Conference on Forest Fire Research, Luso, Portugal’. (Ed. DX Viegas) p. 58. (Millpress: Rotterdam)

Utkin AB, Fernandes A, Simões F, Lavrov A , Vilar R (2003) Feasibility of forest-fire smoke detection using lidar. International Journal of Wildland Fire  12, 159–166.
CrossRef |

Vaidyanathan M , Killinger DK (1994) Intrapulse temporal and wavelength shifts of a high-power 2.1-mm Ho:YAG laser and their potential influence on atmospheric lidar measurements. Applied Optics  33, 7747–7753.


Viegas DX, Cruz MG, Ribeiro LM, Silva AJ, Ollero A, et al. (2002) Gestosa fire spread experiments. In ‘Forest fire research and wildland fire safety: Proceedings of the IV International Conference on Forest Fire Research, Luso, Portugal’. (Ed. DX Viegas) p. 121. (Millpress: Rotterdam)

Vilar R , Lavrov A (2000) Estimation of required parameters for detection of small smoke plumes by lidar at 1.54 mm. Applied Physics. B, Lasers and Optics  71, 225–228.


Watanabe W, Kuroda D, Itoh K, Nishii J (2003) Fabrication of Fresnel zone plate embedded in silica glass by femtosecond laser pulses. Optics Express 10, 978–983. Available at http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-19-978 [Verified 23 November 2004]

Wei H, Koga R, Iokibe K, Wada O , Toyota Y (2001) Stable inversion method for a polarized-lidar: analysis and simulation. Journal of the Optical Society of America. A, Optics and Image Science  18, 392–398.


Wiscombe WJ (1980) Improved Mie scattering algorithms. Applied Optics  19, 1505–1509.



Export Citation Cited By (6)