International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire

Simulation of the Big Elk Fire using coupled atmosphere–fire modeling

Janice L. Coen

National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307, USA. Telephone: +1 303 497 8986; fax: +1 303 497 8181; email:

International Journal of Wildland Fire 14(1) 49-59
Submitted: 24 August 2004  Accepted: 5 November 2004   Published: 7 March 2005


Models that simulate wildland fires span a vast range of complexity; the most physically complex present a difficult supercomputing challenge that cannot be solved fast enough to become a forecasting tool. Coupled atmosphere–fire model simulations of the Big Elk Fire, a wildfire that occurred in the Colorado Front Range during 2002, are used to explore whether some factors that make simulations more computationally demanding (such as coupling between the fire and the atmosphere and fine atmospheric model resolution) are needed to capture wildland fire parameters of interest such as fire perimeter growth. In addition to a Control simulation, other simulations remove the feedback to the atmospheric dynamics and use increasingly coarse atmospheric resolution, including some that can be computed in faster than real time on a single processor. These simulations show that, although the feedback between the fire and atmosphere must be included to capture accurately the shape of the fire, the simulations with relatively coarse atmospheric resolution (grid spacing 100–500 m) can qualitatively capture fire growth and behavior such as surface and crown fire spread and smoke transport. A comparison of the computational performance of the model configured at these different spatial resolutions shows that these can be performed faster than real time on a single computer processor. Thus, although this model still requires rigorous testing over a wide range of fire incidents, it is computationally possible to use models that can capture more complex fire behavior (such as rapid changes in intensity, large fire whirls, and interactions between fire, weather, and topography) than those used currently in the field and meet a faster-than-real-time operational constraint.


Albini FA (1994) ‘PROGRAM BURNUP: a simulation model of the burning of large woody natural fuels.’ Final Report on Research Grant INT-92754-GR by USFS to Montana State University, Mechanical Engineering Department.

Anderson HE (1982) ‘Aids to determining fuel models for estimating fire behavior.’ USDA Forest Service, Intermountain Forest and Range Experiment Station Research Paper INT-122. (Ogden, UT)

Andrews PL (1986) ‘BEHAVE: fire behavior prediction and fuel modeling system–BURN subsystem, Part 1.’ USDA Forest Service, Intermountain Forest and Range Experiment Station General Technical Report INT-194.

Andrews PL, Bevins CD, Seli RC (2003) ‘BehavePlus fire modeling system, version 2.0: User’s Guide.’ USDA Forest Service, Rocky Mountain Research Station General Technical Report RMRS-GTR-106WWW. (Ogden, UT)

Asenio MIFerragut L2002On a wildland fire model with radiation.International Journal for Numerical Methods in Engineering54137157doi:10.1002/NME.420

Catchpole WR, Bradstock RA, Choate J, Fogarty LG, Gellie N, McCarthy GJ, McCaw WL, Marsden-Smedley JB, Pearce G (1999) Cooperative development of prediction equations for fire behaviour in heathlands and shrublands. In ‘Proceedings Australian Bushfire Conference’ (Albury).

Cheney NPGould JSCatchpole WR1993The influence of fuel, weather, and fire shape variables on fire-spread in grasslands.International Journal of Wildland Fire33144

Clark TL1977A small-scale numerical model using a terrain following coordinate transformation.Journal of Computational Physics24186215

Clark TL1979Numerical simulations with a three-dimensional cloud model: lateral boundary condition experiments and multi-cellular severe storm simulations.Journal of Atmospheric Sciences3621912215doi:10.1175/1520-0469(1979)036<2191:NSWATD>2.0.CO;2

Clark TLGall R1982Three-dimensional numerical model simulations of airflow over mountainous terrain: A comparison with observations.Monthly Weather Review110766791doi:10.1175/1520-0493(1982)110<0766:TDNMSO>2.0.CO;2

Clark TLHall WD1991Multi-domain simulations of the time dependent Navier Stokes equation: Benchmark Error analyses of nesting procedures.Journal of Computational Physics92456481doi:10.1016/0021-9991(91)90218-A

Clark TLHall WD1996On the design of smooth, conservative vertical grids for interactive grid nesting with stretching.Journal of Applied Meteorology3510401046doi:10.1175/1520-0450(1996)035<1040:TDOSCV>2.0.CO;2

Clark TLJenkins MACoen JPackham D1996aA coupled atmospheric–fire model: convective feedback on fire line dynamics.Journal of Applied Meteorology35875901doi:10.1175/1520-0450(1996)035<0875:ACAMCF>2.0.CO;2

Clark TLJenkins MACoen JPackham D1996bA coupled atmospheric–fire model: convective Froude number and dynamic fingering.International Journal of Wildland Fire6177190

Clark TLCoen JLLatham D2004Description of a coupled atmosphere–fire model.International Journal of Wildland Fire134963

Close K (2002) ‘Big Elk Fire CO-ARF-238 July 17–23, 2002. Fire Behavior and Weather Documentation CD.’ (CD-ROM)

Coen JL, Clark TL, Latham D (2001) Coupled atmosphere–fire model simulations in various fuel types in complex terrain. In ‘Preprints 4th symposium on fire and forest meteorology’. Reno, NV. pp. 39–42. (American Meteorological Society)

Coen JMahalingam SDaily J2004Infrared imagery of crown fire dynamics during FROSTFIRE.Journal of Applied Meteorology4312411259doi:10.1175/1520-0450(2004)043<1241:IIOCDD>2.0.CO;2

Dupuy JLarini M1999Fire spread through a porous forest fuel bed: a radiative and convective model including fire-induced flow effects.International Journal of Wildland Fire9155172

Emmons HW1963Fire in the forest.Fire Research Abstracts and Reviews5163178

Evans DD, Rehm RG, McPherson EG (2003) Physics-based modeling of wildland-urban intermix fires. In ‘Proceedings 3rd international wildland fire conference’. 3–6 October 2003, Sydney, Australia. (CD-ROM)

Finney MA (1998) ‘FARSITE: Fire Area Simulator—model development and evaluation.’ USDA Forest Service, Rocky Mountain Research Station Research Paper RMRS-RP-4. (Ogden, UT)

Fons WL1946Analysis of fire spread in light fuels.Journal of Agricultural Research7293121

Forestry Canada Fire Danger Group (1992) Development and structure of the Canadian Forest Fire Behavior Prediction System. Information Report ST-X-3. (Forestry Canada, Science and Sustainable Development Directorate: Ottawa)

Fujioka FM2002A new method for the analysis of fire spread modeling errors.International Journal of Wildland Fire11193203

Jones C, Dennison PE, Fujioka FM, Weise DR, Benoit JW (2003) Analysis of space/time characteristics of errors in an integrated weather/fire spread simulation. In ‘ Proceedings 5th symposium on fire and forest meteorology/2nd international wildland fire ecology and fire management congress’. (Orlando, FL) Paper J2.8. (CD-ROM) (American Meteorological Society: Boston, MA)

Linn RReisner JColman JJWinterkamp J2002Studying wildfire behavior using FIRETEC.International Journal of Wildland Fire11233246doi:10.1071/WF02007

McAlpine RS, Lawson BD, Taylor E (1991) Fire spread across a slope. In ‘Proceedings of the 11th conference on fire and forest meteorology’. pp. 218–225. (Society of American Foresters: Missoula, MT)

McGrattan K (Ed.) (2004) ‘Fire Dynamics Simulator (Version 4)–Technical Reference Guide.’ NIST Special Publication 1018. Available at [Verified 27 January 2005]

Nelson RM2002An effective wind speed for models of fire spread.International Journal of Wildland Fire11153161doi:10.1071/WF02031

Noble IRBary GAVGill AM1980McArthur’s fire danger meters expressed as equations.Australian Journal of Ecology5201203

Ottmar RD, Sandberg DV, Prichard SJ, Riccardi CL (2003) Fuel characteristic classification system. In ‘Proceedings 5th symposium on fire and forest meteorology’. (Orlando, FL) Paper 1.8. (CD-ROM) (American Meteorological Society: Boston, MA)

Porterie BMorvan DLoraud JCLarini M2000Firespread through fuel beds: modeling of wind-aided fires and induced hydrodynamics.Physics of Fluids1217621782

Richards GD1994The properties of elliptical wildfire growth for time dependent fuel and meteorological conditions.Combustion Science and Technology95357383

Richards GD1995A general mathematical framework for modelling two-dimensional wildland fire spread.International Journal of Wildland Fire56371

Richards GDBryce RW1995A computer algorithm for simulating the spread of wildland fire perimeters for heterogeneous fuel and meteorological conditions.International Journal of Wildland Fire57379

Roberts DA, Dennison PE, Morais M, Gardner ME, Regelbrugge J, Ustin SL (1999) Mapping wildfire fuels using imaging spectrometry along the wildland urban interface. In ‘Proceedings of the Joint Fire Science conference and workshop’ (Boise, ID), Vol. 1, pp. 212–223.

Roe K, Stevens D, McCord C (2001) High resolution weather modeling for improved fire management. In ‘Proceedings of the 2001 ACM/IEEE conference on supercomputing’ (Denver, CO). p. 48. (CD-ROM) (Association for Computing Machinery Press: New York)

Rothermel RC (1972) A mathematical model for predicting fire spread in wildland fuels. USDA Forest Service, Intermountain Forest and Range Experiment Station Research Paper INT-115. (Ogden, UT)

Sandberg DVOttmar RDCushon GH2001Characterizing fuels in the 21st century.International Journal of Wildland Fire10381387

Thompson T, Gillard P, Driese K, Reiners WA, Thurston R, Schrupp D (1996) ‘Manual to accompany the GAP analysis land cover map of Colorado.’ (Colorado Division of Wildlife: Denver)

Viney NRCatchpole EA1991Estimating fuel moisture response times from field observations.International Journal of Wildland Fire1211214

Zeller K, Nikolov N, Snook J, Finney M, McGinley J, Forthofer J (2003) Comparison of 2-D wind fields and simulated wildland fire growth. In ‘Proceedings 5th symposium on fire and forest meteorology/2nd international wildland fire ecology and fire management congress’ (Orlando, FL). Paper J2.5. (CD-ROM) (American Meteorological Society: Boston, MA)

Export Citation Cited By (36)