International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE

Analysis of Alaskan burn severity patterns using remotely sensed data

Paul A. Duffy A E , Justin Epting B , Jonathan M. Graham C , T. Scott Rupp A and A. David McGuire D

A Ecological Dynamics Modeling Group, Department of Forest Sciences, University of Alaska, Fairbanks, AK 99775, USA.

B Center for Applied Biodiversity Science, Conservation International, Washington, DC 20036, USA.

C Department of Mathematical Sciences, University of Montana, Missoula, MT 59812, USA.

D US Geological Survey, Alaska Cooperative Fish and Wildlife Research Unit, University of Alaska, Fairbanks, AK 99775, USA.

E Corresponding author. Email: paul.duffy@uaf.edu

International Journal of Wildland Fire 16(3) 277-284 http://dx.doi.org/10.1071/WF06034
Submitted: 14 March 2006  Accepted: 17 October 2006   Published: 3 July 2007

Abstract

Wildland fire is the dominant large-scale disturbance mechanism in the Alaskan boreal forest, and it strongly influences forest structure and function. In this research, patterns of burn severity in the Alaskan boreal forest are characterised using 24 fires. First, the relationship between burn severity and area burned is quantified using a linear regression. Second, the spatial correlation of burn severity as a function of topography is modelled using a variogram analysis. Finally, the relationship between vegetation type and spatial patterns of burn severity is quantified using linear models where variograms account for spatial correlation. These results show that: 1) average burn severity increases with the natural logarithm of the area of the wildfire, 2) burn severity is more variable in topographically complex landscapes than in flat landscapes, and 3) there is a significant relationship between burn severity and vegetation type in flat landscapes but not in topographically complex landscapes. These results strengthen the argument that differential flammability of vegetation exists in some boreal landscapes of Alaska. Additionally, these results suggest that through feedbacks between vegetation and burn severity, the distribution of forest vegetation through time is likely more stable in flat terrain than it is in areas with more complex topography.

Additional keywords: Alaska fire, fire variograms, normalised burn ratio, spatial ANOVA.


References

Bessie WCJohnson EA1995The relative importance of fuels and weather on fire behavior in subalpine forests.Ecology76747762doi:10.2307/1939341

Bridge SRJJohnson EA2000Geomorphic principles of terrain organization and vegetation gradients.Journal of Vegetation Science115770doi:10.2307/3236776

Chrosciewicz Z1974Evaluation of fire-produced seedbeds for Jack Pine regeneration in central Ontario.Canadian Journal of Forest Research4455457

Csiszar I, Justice CO, McGuire AD, Cochrane MA, Roy DP, et al. (2004) Land use and fires. In ‘Land Change Science: Observing, Monitoring, and Understanding Trajectories of Change on the Earth's Surface’. (Eds G Gutman, AC Janetos, CO Justice, EF Moran, JF Mustard, RR Rindfuss, D Skole, BL Turner II, MA Cochrane) pp. 329–350. (Kluwer Academic Publishers: Dordrecht, Netherlands)

Duffy PAWalsh JEGraham JMMann DHRupp TS2005Impacts of large-scale atmospheric-ocean variability on Alaskan fire season severity.Ecological Applications1513171330


Dyrness CTNorum RA1983The effects of experimental fires on black spruce forest floors in interior Alaska.Canadian Journal of Forest Research13879893


Epting JVerblya DSorbel B2005Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+.Remote Sensing of Environment96328339
doi:10.1016/J.RSE.2005.03.002

Epting JVerbyla D2005Landscape-level interactions of prefire vegetation, burn severity, and postfire vegetation over a 16-year period in interior Alaska.Canadian Journal of Forest Research3513671377doi:10.1139/X05-060

Foster DR1985Vegetation development following fire in Picea mariana (black spruce)-Pleurozium forests of South-Eastern Labrador Canada.Journal of Ecology73517534doi:10.2307/2260491

Greene DFNoel JBergeron YRousseau MGauthier S2004Recruitment of Picea mariana, Pinus banksiana, and Populus tremuloides across a burn severity gradient following wildfire in the southern boreal forest of Quebec.Canadian Journal of Forest Research3418451857doi:10.1139/X04-059

IPCC (2001) ‘Climate Change 2001: Technical Summary of the Working Group I Report.’ WMO/UNEP. (Cambridge University Press: Cambridge)

Johnson RAVerrill SMoore DHII1987Two-sample rank tests for detecting changes that occur in a small proportion of the treated population.Biometrics43641655doi:10.2307/2532001

Johnson LB1990Analyzing spatial and temporal phenomena using geographical information systems.Landscape Ecology43143

Johnson EAWowchuk DR1993Wildfires in the southern Canadian Rocky Mountains and their relationship to mid-tropospheric anomalies.Canadian Journal of Forest Research2312131222


Johnstone JFChapin FSIIIFoote JKemmett SPrice KViereck L2004Decadal observations of tree regeneration following fire in the boreal forest.Canadian Journal of Forest Research34267273
doi:10.1139/X03-183

Johnstone JFKasischke ES2005Stand-level effects of soil burn severity on postfire regeneration in a recently burned black spruce forest.Canadian Journal of Forest Research3521512163doi:10.1139/X05-087

Kasischke ESWilliams DBarry D2002Analysis of the patterns of large fires in the boreal forest region of Alaska.International Journal of Wildland Fire11131144doi:10.1071/WF02023

Key CH, Benson NC (2004) Landscape assessment: ground measure of severity, the composite burn index; and remote sensing of severity, the normalized burn ratio. In ‘FIREMON: Fire Effects Monitoring and Inventory System’. (Eds DC Lutes, RE Keane, JF Caratti, CH Key, NC Benson, LJ Gangi) pp. XX–XX. USDA Forest Service General Technical Report RMRS-GTR-XXX. (U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Ogden, UT)

Lecomte NSimard MBergeron YLarouche AAsnong HRichard PJH2005Effects of fire severity and initial tree composition on understory vegetation dynamics in a boreal landscape inferred from a chronosequence and paleoecological data.Journal of Vegetation Science16665674doi:10.1658/1100-9233(2005)016[0665:EOFSAI]2.0.CO;2

Mann DHPlug LJ1999Vegetation and soil development at an upland taiga site, Alaska.Bioscience6272285

McGuire AD, Apps M, Chapin FS, III, Dargaville R, Flannigan MD, et al. (2004) Land cover disturbances and feedbacks to the climate system in Canada and Alaska. In ‘Land Change Science: Observing, Monitoring, and Understanding Trajectories of Change on the Earth's Surface’. (Eds G Gutman, AC Janetos, CO Justice, EF Moran, JF Mustard, RR Rindfuss, D Skole, BL Turner II, MA Cochrane) pp. 139–161. (Kluwer Adademic Publishers: Dordrecht, Netherlands)

Melillo JMMcGuire ADKicklighter DWMoore BIIIVorosmarty CJSchloss AL1993Global climate change and terrestrial net primary production.Nature363234240
doi:10.1038/363234A0

Michalek JLFrench NHFKasischke ESJohnson RDColwell JE2000Using Landsat TM data to estimate carbon release from burned biomass in an Alaskan spruce forest complex.International Journal of Remote Sensing21323328doi:10.1080/014311600210858

Miyanishi KJohnson EA2002Process and patterns of duff consumption in the mixedwood boreal forest.Canadian Journal of Forest Research3212851295doi:10.1139/X02-051

Payette S (1992) Fire as a controlling process in the North American boreal forest. In ‘A Systems Analysis of the Global Boreal Forest’. (Eds HH Shugart, R Leemans, GB Bonan) pp. 145–169. (Cambridge University Press: Cambridge, UK)

Ribeiro PJ Jr, Diggle PJ (2001) geoR: A package for geostatistical analysis. R-News 1(2). Available at http://cran.r-project.org/doc/Rnews [verified date].

Smyth GKVerbyla AP1996A conditional approach to residual maximum likelihood estimation in generalized linear models.Journal of the Royal Statistical Society B58565572

Van Cleve K, Viereck LA (1983) A comparison of successional sequences following fire on permafrost-dominated and permafrost-free sites in interior Alaska. Permafrost: Fourth International Conference, Proceedings, 1286–1291.

Van Wagner CE1977Effect of slope on fire spread rate.Canadian Forestry Service, Bimonthly Research notes3378


van Wagtendonk JWRoot RRKey CH2004Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity.Remote Sensing of Environment92397408
doi:10.1016/J.RSE.2003.12.015

Viereck LA, Dyrness CT, Batten AR, Wenzlick KJ (1992) The Alaska (USDA Forest Service, Pacific Northwest Research Station: Portland, OR)

Yarie J1981Forest fire cycles and life tables: a case study from interior Alaska.Canadian Journal of Forest Research11554562

Zackrisson O1977Influence of forest fires on the North Swedish boreal forest.Oikos292232
doi:10.2307/3543289

Zasada JCNorum RAVan Veldhuizen RMTeutsch CE1983Artificial regeneration of trees and tall shrubs in experimentally burned upland black spruce/feather moss stands in Alaska.Canadian Journal of Forest Research13903913



Export Citation Cited By (55)