International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE

What do we know about forest fire size distribution, and why is this knowledge useful for forest management?

Wenbin Cui A B and Ajith H. Perera A
+ Author Affiliations
- Author Affiliations

A Ontario Forest Research Institute, Ontario Ministry of Natural Resources, 1235 Queen Street E, Sault Ste. Marie, ON P6A 2E5, Canada.

B Corresponding author. Email: wenbin.cui@ontario.ca

International Journal of Wildland Fire 17(2) 234-244 https://doi.org/10.1071/WF06145
Submitted: 9 November 2006  Accepted: 17 September 2007   Published: 18 April 2008

Abstract

Forest fire size distribution (FSD) is one of the suite of indicators of forest fire regimes. It is applied in forest fire management, particularly for planning and evaluating suppression efforts. It is also used in forest management in the context of emulating natural fire disturbances. Given the recent growth in research and applied interest in this topic, we review and synthesise the state of knowledge on FSD, and identify sources of knowledge uncertainties and future research directions. Based on literature, it is common for forest fires to follow the power law probability distribution, particularly the truncated subtype, under a variety of forest types and forest and fire management practices. Other types of FSD are also observed, but under specific circumstances. Although there is evidence that observed FSDs vary both over space and time, the knowledge is too fragmented to generalise the cause–effect relationships for such variation. As well, it is not clear how the various methods of studying FSD and their spatio-temporal scales influence derivations of FSDs. We suggest that a hypothetico-deductive research approach, combining empirical studies with process-based simulations is an effective means to advance the knowledge of FSD. We suggest caution in the use of FSD in forest management because applying different distributions or even different parameters for the same distribution may result in great fire size class differences and thus different implications for forest management.

Additional keywords: emulating forest disturbances, fire management, number of fires, power law, self-organisation.


References


Alvarado E, Sandberg DV , Pickford SG (1998) Modeling large forest fires as extreme events. Northwest Science  72, 66–75.


Andison DW (2003a) Patch and event sizes on foothills and mountain landscapes of Alberta. Bandaloop Landscape–Ecosystem Services, Alberta Foothills Disturbance Ecology Research Series, Report No. 4. (Belcarra, BC)

Andison DW (2003b) Disturbance events on foothills and mountain landscapes of Alberta: Part I. Bandaloop Landscape–Ecosystem Services, Alberta Foothills Disturbance Ecology Research Series, Report No. 5. (Belcarra, BC)

Attiwill PM (1994) The disturbance of forest ecosystems: the ecological basis for conservative management. Forest Ecology and Management  63, 247–300.
CrossRef |

Baker WL (1989) Landscape ecology and nature reserve design in the Boundary Waters Canoe Area, Minnesota. Ecology  70, 23–35.
CrossRef |

Baker WL (1992) The landscape ecology of large disturbances in the design and management of nature reserves. Landscape Ecology  7, 75–98.


Bergeron Y (1991) The influence of island and mainland lakeshore landscapes on boreal forest fire regimes. Ecology  72, 1980–1992.
CrossRef |

Bergeron Y , Harvey B (1997) Basing silviculture on natural ecosystem dynamics: an approach applied to the southern boreal mixedwood forest of Quebec. Forest Ecology and Management  92, 235–242.
CrossRef |

Bergeron Y, Leduc A, Harvey BD , Gauthier S (2002) Natural fire regime: a guide for sustainable management of the Canadian boreal forest. Silva Fennica  36, 81–95.


Bergeron Y, Gauthier S, Flannigan M , Kafka V (2004) Fire regimes at the transition between mixedwood and coniferous boreal forest in Northwestern Quebec. Ecology  85, 1916–1932.
CrossRef |

Boychuk D, Perera AH, Ter-Mikaelian MT, Martell DL , Li C (1997) Modelling the effect of spatial scale and correlated fire disturbances on forest age distribution. Ecological Modeling  95, 145–164.
CrossRef |

Bridge SRJ, Miyanishi K , Johnson EA (2005) A critical evaluation of fire suppression effects in the boreal forest of Ontario. Forest Science  51, 41–50.


Burroughs S , Tebbens SF (2001) Upper-truncated power laws in natural systems. Pure and Applied Geophysics  158, 741–757.
CrossRef |

Calkin DE, Gebert KM, Jones JC , Neilson RP (2005) Forest Service large fire area burned and suppression expenditure trends, 1970–2002. Journal of Forestry  103, 179–183.


Cardille JA , Ventura SJ (2001) Occurrence of wildfire in the northern Great Lakes Region: effects of land cover and land ownership assessed at multiple scales. International Journal of Wildland Fire  10, 145–154.
CrossRef |

Chou YH, Minnich RA , Dezzani RJ (1993) Do fire sizes differ between Southern California and Baja-California? Forest Science  39, 835–844.


Cramer OP (1959) Relation of number and size of fires to fire-season weather indexes in western Washington and western Oregon. USDA Forest Service, Pacific and Northwest Forest and Range Experiment Station, Research Note No. 175. (Portland, OR)

Cumming SG (2000) ‘A Synopsis of Fire Research in the Boreal Mixedwood Forest.’ (Boreal Ecosystems Research Ltd: Edmonton, AB)

Cumming SG (2001) A parametric model of the fire-size distribution. Canadian Journal of Forest Research  31, 1297–1303.
CrossRef |

Cumming SG (2005) Effective fire suppression in boreal forests. Canadian Journal of Forest Research  35, 772–786.
CrossRef |

Davis LS (1965) ‘The Economics of Wildfire Protection with Emphasis on Fuel Break System.’ (California Department of Forestry and Fire Protection: Sacramento, CA)

DeLong SC (1998) Natural disturbance rate and patch size distribution of forests in Northern British Columbia: implications for forest management. Northwest Science  72, 35–48.


DeLong SC , Tanner D (1996) Managing the pattern of forest harvest: lessons from wildfire. Biodiversity and Conservation  5, 1191–1205.
CrossRef |

Díaz-Delgado R, Lloret F , Pons X (2004) Spatial patterns of fire occurrence in Catalonia, NE, Spain. Landscape Ecology  19, 731–745.
CrossRef |

DiBari JN (2003) Scaling exponents and rank-size distributions as indicators of landscape character and change. Ecological Indicators  3, 275–284.
CrossRef |

Donovan GH , Noordijk P (2005) Assessing the accuracy of wildland fire situation analysis (WFSA) fire size and suppression cost estimates. Journal of Forestry  105, 10–13.


Fisher JT , Wilkinson L (2005) The response of mammals to forest fire and timber harvest in the North American boreal forest. Mammal Review  35, 51–81.
CrossRef |

Flannigan MD, Wotton BM (2001) Climate, weather, and area burned. In ‘Forest Fires: Behaviour and Ecological Effects’. (Eds EA Johnson, AK Miyanishi) pp. 351–373. (Academic Press: New York)

Forestry Canada, Fire Danger Group (1992) Development and structure of the Canadian Forest Fire Behavior Prediction System. Forestry Canada, Science and Sustainable Development Directorate Information Report ST-X-3. (Ottawa, ON)

Gill AM, Allan G , Yates C (2003) Fire-created patchiness in Australian savannas. International Journal of Wildland Fire  12, 323–331.
CrossRef |

Government of Ontario (1994) Crown Forest Sustainability Act, Statutes of Ontario, Ch. 25. (Ottawa, ON) Available at http://www.e-laws.gov.on.ca/Download?dDocName=elaws_statutes_94c25_e [Verified 17 March 2008]

Hawkes B, Vasbinder W, DeLong G (1997a) ‘Retrospective Fire Study – Fire Regimes in the SBSvk & ESSFwk2/wc3 Biogeoclimatic Units of North-Eastern British Columbia.’ (McGregor Model Forest Network: Prince George, BC)

Hawkes B, Vasbinder W, Opio C, DeLong G (1997b) ‘Fire in the SBS and ESSF Biogeoclimatic Zones of British Columbia – a Literature Review.’ (McGregor Model Forest Network: Prince George, BC)

Haydon DT, Friar JK , Pianka ER (2000) Fire-driven dynamic mosaics in the Great Victoria Desert, Australia. I. Fire geometry. Landscape Ecology  15, 373–382.
CrossRef |

He HS , Mladenoff DJ (1999) Spatially explicit and stochastic simulation of forest-landscape fire disturbance and succession. Ecology  80, 81–99.


Heinselman ML (1981) Fire intensity and frequency as factors in the distribution and structure of northern ecosystems. In ‘Proceedings of the Conference – Fire Regimes and Ecosystem Properties’, Honolulu, HI. (Eds HA Mooney, TM Bonnicksen, NL Christensen, JE Lotan, WA Reiners) USDA Forest Service, General Technical Report WO-26. pp. 7–57. (Honolulu, HI)

Heyerdahl EK, Brubaker LB , Agee JK (2001) Spatial controls of historical fire regimes: a multiscale example from the interior west, USA. Ecology  82, 660–678.


Hirsch K, Kafka V, Tymstra C, McAlpine R, Hawkes B, Stegehuis H, Qunitilio S, Gauthier S , Peck K (2001) Fire-smart forest management: a pragmatic approach to sustainable forest management in fire-dominated ecosystems. Forestry Chronicle  77, 357–363.


Holmes TP, Prestemon JP, Pye JM, Butry DT, Mercer DE, Abt KL (2004) Using size–frequency distributions to analyze fire regimes in Florida. In ‘Proceedings of the 22nd Tall Timbers Fire Ecology Conference: Fire in Temperate, Boreal, and Montane Ecosystems’. (Eds RT Engstrom, KEM Galley, WJ de Groot) pp. 88–94. (Tall Timbers Research Station: Tallahassee, FL)

Hunter ML (1993) Natural fire regimes as spatial models for managing boreal forests. Biological Conservation  65, 115–120.
CrossRef |

Johnson EA (Ed.) (1996) ‘Fire and Vegetation Dynamics: Studies from the North American Boreal Forest.’ (Cambridge University Press: New York)

Johnson EA, Miyanishi K , Weir JMH (1998) Wildfires in the western Canadian boreal forest: landscape patterns and ecosystem management. Journal of Vegetation Science  9, 603–610.
CrossRef |

Johnson EA, Miyanishi K , Bridge SRJ (2001) Wildfire regime in the Boreal forest and the idea of suppression and fuel buildup. Conservation Biology  15, 1554–1557.
CrossRef |

Jordan GJ, Fortin M , Lertzman KP (2005) Assessing spatial uncertainty associated with forest fire boundary delineation. Landscape Ecology  20, 719–731.
CrossRef |

Lefort P, Gauthier S , Bergeron Y (2003) The influence of fire weather and land use on the fire activity of the Lake Abitibi area, eastern Canada. Forest Science  49, 509–521.


Li C (2000) Fire regimes and their simulation with reference to Ontario. In ‘Ecology of a Managed Terrestrial Landscape: Patterns and Processes of Forest Landscapes in Ontario’. (Eds AH Perera, DL Euler, ID Thompson) pp. 115–140. (UBC Press: Vancouver, BC)

Li C (2004) Simulating forest fire regimes in the foothills of the Canadian Rocky Mountains. In ‘Emulating Natural Forest Landscape Disturbances: Concepts and Applications’. (Eds AH Perera, LJ Buse, MG Weber) pp. 98–111. (Columbia University Press: New York)

Li C, Corns IGW , Yang RC (1999) Fire frequency and size distribution under natural conditions: a new hypothesis. Landscape Ecology  14, 533–542.
CrossRef |

Li C, Barclay H, Liu J , Campbell D (2005) Simulation of historical and current fire regimes in central Saskatchewan. Forest Ecology and Management  208, 319–329.
CrossRef |

Malamud BD , Turcotte DL (1999) Self-organized criticality applied to natural hazards. Natural Hazards  20, 93–116.
CrossRef |

Malamud BD, Morein G , Turcotte DL (1998) Forest fires: an example of self-organized critical behavior. Science  281, 1840–1842.
CrossRef | PubMed |

Malamud BD, Morein G , Turcotte DL (2005a) Log-periodic behavior in a forest-fire model. Nonlinear Processes in Geophysics  12, 575–585.


Malamud BD, Millington JDA , Perry GLW (2005b) Characterizing wildfire regimes in the United States. Proceedings of the National Academy of Sciences of the United States of America  102, 4694–4699.
CrossRef | PubMed |

Martell DL (1994) The impact of fire on timber supply in Ontario. Forestry Chronicle  70, 164–173.


McRae DJ, Duchesne LC, Freedman B, Lynham TJ , Woodley S (2001) Comparisons between wildfire and forest harvesting and their implications in forest management. Environmental Reviews  9, 223–260.
CrossRef |

Minnich RA (1983) Fire mosaics in Southern California and Northern Baja California. Science  219, 1287–1294.
CrossRef | PubMed |

Minnich RA , Chou YH (1997) Wildland fire patch dynamics in the chaparral of southern California and northern Baja California. International Journal of Wildland Fire  7, 221–248.
CrossRef |

Miyanishi K , Johnson EA (2001) Comment–A re-examination of the effects of fire suppression in the boreal forest. Canadian Journal of Forest Research  31, 1462–1466.
CrossRef |

Moreno JM, Vazquez A, Velez R (1998) Recent history of forest fires in Spain. In ‘Large Forest Fires’. (Ed. JM Moreno) pp. 159–186. (Backhuys Publishers: Leiden)

Moritz MA (1997) Analyzing extreme disturbance events: fire in Los Padres national forest. Ecological Applications  7, 1252–1262.
CrossRef |

Moritz MA, Morais ME, Summerell LA, Calson JM , Doyle J (2005) Wildfires, complexity, and highly optimized tolerance. Proceedings of the National Academy of Sciences of the United States of America  102, 17912–17917.
CrossRef | PubMed |

Niklasson M , Granstrom A (2000) Numbers and sizes of fires: long-term spatially explicit fire history in a Swedish boreal landscape. Ecology  81, 1484–1499.


Ontario Ministry of Natural Resources (1997) Forest management guidelines for the emulation of fire disturbance patterns – analysis results. Ontario Ministry of Natural Resources, Forest Management Branch. (Sault Ste. Marie, ON)

Ontario Ministry of Natural Resources (2001) ‘Forest Management Guide for Natural Disturbance Pattern Emulation, Version 3.1.’ (Queen’s Printer for Ontario: Toronto, ON)

Palma CD, Cui W, Martell DL, Robak D , Weintraub A (2007) Assessing the impact of stand-level harvests on the flammability of forest landscapes. International Journal of Wildland Fire  16, 584–592.
CrossRef |

Parisien MA, Hirsch KG, Lavoie SG, Todd JB, Kafka VG (2004) Saskatchewan fire regime analysis. Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre Information Report NOR-X-394. (Edmonton, AB)

Payette S, Morneau C, Sirois L , Desponts M (1989) Recent fire history of the northern Quebec biomes. Ecology  70, 656–673.
CrossRef |

Pereira MG, Calado T, DaCamara CC , Leite SM (2004) Parametric models of Portuguese fire size distribution. Geophysical Research Abstracts  6, 06008.


Perera AH, Buse LJ, Weber MG (Eds) (2004a) ‘Emulating Natural Forest Landscape Disturbances: Concepts and Applications.’ (Columbia University Press: New York)

Perera AH, Yemshanov D, Schnekenburger F, Baldwin DJB, Boychuk D, Weaver K (2004b) Spatial simulation of broad-scale fire regimes as a tool for emulating natural forest landscape disturbance. In ‘Emulating Natural Forest Landscape Disturbances: Concepts and Applications’. (Eds AH Perera, LJ Buse, MG Weber) pp. 112–122. (Columbia University Press: New York)

Piñol J, Beven K , Viegas DX (2005) Modelling the effect of fire-exclusion and prescribed fire on wildfire size in Mediterranean ecosystems. Ecological Modeling  183, 397–409.
CrossRef |

Rasmussen MC , Ripple WJ (1998) Retrospective analysis of forest landscape patterns in western Oregon. Natural Areas Journal  18, 151–163.


Reed WJ , McKelvey KS (2002) Power law behaviour and parametric models for the size-distribution of forest fires. Ecological Modeling  150, 239–254.
CrossRef |

Ricotta C, Avena G , Marchetti M (1999) The flaming sandpile: self-organized criticality and wildfires. Ecological Modeling  119, 73–77.
CrossRef |

Ricotta C, Arianoutsou M, Díaz-Delgado R, Duguy B, Lloret F, Maroudi E, Mazzoleni S, Moreno JM, Rambal S, Vallejo R , Vázquez A (2001) Self-organized criticality of wildfires ecologically revisited. Ecological Modeling  141, 307–311.
CrossRef |

Robertson CA (1972) Analysis of forest fire data in California. Department of Statistics, University of California, Technical Report No. 11. (Riverside, CA)

Rollins MG, Swetnam TW , Morgan P (2001) Evaluating a century of fire patterns in two Rocky Mountain wilderness areas using digital fire atlases. Canadian Journal of Forest Research  31, 2107–2123.
CrossRef |

Romme WH, Turner MG, Tinker DB, Knight DH (2004) Emulating natural forest disturbance in the wildland–urban interface of the greater Yellowstone ecosystem of the United States. In ‘Emulating Natural Forest Landscape Disturbances: Concepts and Applications’. (Eds AH Perera, LJ Buse, MG Weber) pp. 243–250. (Columbia University Press: New York)

Ryan KC (2002) Dynamic interactions between forest structure and fire behavior in boreal ecosystems. Silva Fennica  36, 13–39.


Schenk K, Drossel B, Clar S , Schwabl F (2000) Finite-size effects in the self-organized critical forest-fire model. The European Physical Journal B  15, 177–185.
CrossRef |

Schoenberg FP, Peng R , Woods J (2003) On the distribution of wildfire sizes. Environmetrics  14, 583–592.
CrossRef |

Song W, Fan W, Wang B , Zhou J (2001) Self-organized criticality of forest fires in China. Ecological Modeling  145, 61–68.
CrossRef |

Song W, Fan W , Wang B (2002) Influences of finite-size effects on the self-organized criticality of forest-fire model. Chinese Science Bulletin  47, 177–180.
CrossRef |

Strauss D, Bednar L , Mees R (1989) Do one percent of forest fires cause ninety-nine percent of the damage? Forest Science  35, 319–328.


Sweaney JN (1983) Old burns limit size of fires. In ‘Proceedings of the Wilderness Fire Symposium’, 15–16 November 1983, Missoula, MT. (Eds JE Lotan, BM Kilgore, WC Fischer, RW Mutch) USDA Forest Service, General Technical Report INT-182. (Missoula, MT)

Telesca L, Amatulli G, Lasaponara R, Lovallo M , Santulli A (2005) Time-scaling properties in forest-fire sequences observed in Gargano area (southern Italy). Ecological Modeling  185, 531–544.
CrossRef |

Turcotte DL, Malamud BD, Morein G , Newman WI (1999) An inverse-cascade model for self-organized critical behavior. Physica A: Statistical Mechanics and its Applications  268, 629–643.
CrossRef |

Van Wagtendonk JW (1986) The role of fire in the Yosemite Wilderness. In ‘Proceedings – National Wilderness Research Conference: Current Research’, July 1985, Fort Collins, CO. (Ed. RC Lucas) USDA Forest Service, Intermountain Research Station, General Technical Report INT-212. pp. 2–9. (Ogden, UT)

Vazquez A , Moreno JM (2001) Spatial distribution of forest fires in Sierra de Gredos (Central Spain). Forest Ecology and Management  147, 55–65.
CrossRef |

Ward PC, Tithecott AG (1993) The impact of fire management on the boreal landscape of Ontario. Ontario Ministry of Natural Resources, Aviation, Flood and Fire Management Branch, Publication No. 305. (Sault Ste. Marie, ON)

Ward PC, Tithecott AG , Wotton BM (2001) Reply – A re-examination of the effects of fire suppression in the boreal forest. Canadian Journal of Forest Research  31, 1467–1480.
CrossRef |

Weber MG, Stocks BJ (1998) Forest fires in the boreal forests of Canada. In ‘Large Forest Fires’. (Ed. JM Moreno) pp. 215–233. (Backhuys Publishers: Leiden)

Wotton BM (2004) Predicting forest fire occurrence in Ontario. PhD Dissertation, University of Toronto.



Export Citation Cited By (31)