International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire

Evaluating predictive models of critical live fuel moisture in the Santa Monica Mountains, California

Philip E. Dennison A D , Max A. Moritz B and Robert S. Taylor C

A Department of Geography and Center for Natural and Technological Hazards, University of Utah, 260 S Central Campus Drive, Salt Lake City, UT 84112, USA.

B Environmental Science, Policy, and Management Department, Center for Fire Research and Outreach, University of California, Berkeley, CA 94720, USA.

C National Park Service, Santa Monica Mountains National Recreation Area, 401 W Hillcrest Drive, Thousand Oaks, CA 91360, USA.

D Corresponding author. Email:

International Journal of Wildland Fire 17(1) 18-27
Submitted: 8 February 2007  Accepted: 5 June 2007   Published: 14 February 2008


Large wildfires in the Santa Monica Mountains of southern California occur when low levels of live and dead fuel moisture coincide with Santa Ana wind events. Declining live fuel moisture may reach a threshold that increases susceptibility to large wildfires. Live fuel moisture and fire history data for the Santa Monica Mountains from 1984 to 2005 were used to determine a potential critical live fuel moisture threshold, below which large fires become much more likely. The ability of live fuel moisture, remote sensing, and precipitation variables to predict the annual timing of 71 and 77% live fuel moisture thresholds was assessed. Spring precipitation, measured through the months of March, April, and May, was found to be strongly correlated with the annual timing of both live fuel moisture thresholds. Large fires in the Santa Monica Mountains only occurred after the 77% threshold was surpassed, although most large fires occurred after the less conservative 71% threshold. Spring precipitation has fluctuated widely over the past 70 years but does not show evidence of long-term trends. Predictive models of live fuel moisture threshold timing may improve planning for large fires in chaparral ecosystems.

Additional keywords: chamise, chaparral, precipitation, wildfire danger.


Anon.  (2007) Los Angeles Times Archive. Available at [Verified 4 January 2008]

Chuvieco ERiano DAguado ICocero D2002Estimation of fuel moisture content from multitemporal analysis of Landsat Thematic Mapper reflectance data: applications in fire danger assessment.International Journal of Remote Sensing2321452162doi:10.1080/01431160110069818

Countryman CM, Dean WA (1979) Measuring moisture content in living chaparral: a field user’s manual. USDA Forest Service, Pacific Southwest Forest and Range Experiment Station. General Technical Report 36. (Berkeley, CA)

Davis FW, Michaelsen J (1995) Sensitivity of fire regime in chaparral ecosystems to climate change. In ‘Global Change and Mediterranean-Type Ecosystems’. (Eds JM Moreno, WC Oechel) pp. 435–456. (Springer: New York)

Dennison PERoberts DAPeterson SHRechel J2005Use of normalized difference water index for monitoring live fuel moisture.International Journal of Remote Sensing2610351042doi:10.1080/0143116042000273998

Dennison PERoberts DAPeterson SH2007Spectral shape-based temporal compositing algorithms for MODIS surface reflectance data.Remote Sensing of Environment109510522doi:10.1016/J.RSE.2007.02.009

Gao BC1996NDWI – A normalized difference water index for remote sensing of vegetation liquid water from space.Remote Sensing of Environment58257266doi:10.1016/S0034-4257(96)00067-3

Gitelson AAKaufman YStark RRundquist D2002Novel algorithms for remote estimation of vegetation fraction.Remote Sensing of Environment807687doi:10.1016/S0034-4257(01)00289-9

Green LR (1981) Burning by prescription in chaparral. USDA Forest Service, Pacific Southwest Forest and Range Experiment Station, PSW-51. General Technical Report 51. (Berkeley, CA)

Holben BN1986Characteristics of maximum value composite images from temporal AVHRR data.International Journal of Remote Sensing714171434doi:10.1080/01431168608948945

Keeley JE2004Impact of antecedent climate on fire regimes in coastal California.International Journal of Wildland Fire13173182doi:10.1071/WF03037

Keeley JEFotheringham CJ2001Historic fire regime in Southern California shrublandsConservation Biology1515361548doi:10.1046/J.1523-1739.2001.00097.X

Keeley JEFotheringham CJMorais M1999Reexamining fire suppression impacts on brushland fire regimes.Science28418291832doi:10.1126/SCIENCE.284.5421.1829

Kitzberger TBrown PMHeyerdahl EKSwetnam TWVeblen TT2007Contingent Pacific–Atlantic Ocean influence on multicentury wildfire synchrony over western North America.Proceedings of the National Academy of Sciences of the United States of America104543548doi:10.1073/PNAS.0606078104

Miller PCPoole DK1979Pattern of water use by shrubs in southern California.Forest Science258498

Minnich RA1983Fire mosaics in southern California and northern Baja California.Science21912871294

Moritz MA1997Analyzing extreme disturbance events: fire in Los Padres National ForestEcological Applications712521262doi:10.1890/1051-0761(1997)007[1252:AEDEFI]2.0.CO;2

Moritz MA2003Spatiotemporal analysis of controls on shrubland fire regimes: age dependency and fire hazard.Ecology84351361doi:10.1890/0012-9658(2003)084[0351:SAOCOS]2.0.CO;2

Moritz MAKeeley JEJohnson EASchaffner AA2004Testing a basic assumption of shrubland fire management: how important is fuel age?Frontiers in Ecology and the Environment26772doi:10.1890/1540-9295(2004)002[0067:TABAOS]2.0.CO;2

National Park Service (2005) ‘Final Environmental Impact Statement for a Fire Management Plan, Santa Monica Mountains National Recreation Area.’ United States Department of Interior National Park Service. (Thousand Oaks, CA)

Pirsko ARGreen LR1967Record low fuel moisture follows drought in Southern California.Journal of Forestry65642643

Pyne SJ, Andrews PL, Laven RD (1996) ‘Introduction to Wildland Fire.’ (Wiley: New York)

Radtke KW-H, Arndt AM, Wakimoto RH (1982) Fire history of the Santa Monica Mountains. USDA Forest Service, Pacific Southwest Forest and Range Experiment Station, PSW-58. Technical Report. pp. 438–443. (Berkeley, CA)

Raphael MN2003The Santa Ana winds of California.Earth Interactions7113
doi:10.1175/1087-3562(2003)007<0001:TSAWOC>2.0.CO;2Paper no. 8.

Roberts DADennison PEPeterson SSweeney SRechel J2006Evaluation of AVIRIS and MODIS measures of live fuel moisture and fuel condition in a shrubland ecosystem in southern California.Journal of Geophysical Research111G04S02.doi:10.1029/2005JG000113

Rouse JW, Haas RH, Schell JA, Deering DW (1973) Monitoring vegetation systems in the Great Plains with ERTS. In ‘NASA Goddard Space Flight Center 3rd ERTS-1 Symposium, Vol. 1, Section A’. pp. 309–317. Available at [Verified 4 January 2008]

Schoenberg FPPeng RHuang ZRundel P2003Detection of non-linearities in the dependence of burn area on fuel age and climatic variables.International Journal of Wildland Fire1216doi:10.1071/WF02053

Schroeder MJ, Glovinsky M, Hendricks VF, Hood FC, Hull MK, et al. (1969) Synoptic weather types associated with critical fire weather. USDA Forest Service, Pacific Southwest Range and Experiment Station. Technical Report. (Berkeley, CA)

Stow DNiphadkar MKaiser J2005MODIS-derived visible atmospherically resistant index for monitoring chaparral moisture content.International Journal of Remote Sensing2638673873doi:10.1080/01431160500185342

Stow DNiphadkar MKaiser J2006Time series of chaparral live fuel moisture maps derived from MODIS satellite data.International Journal of Wildland Fire15347360doi:10.1071/WF05060

Weise DR, Hartford RA, Mahaffey L (1998) Assessing live fuel moisture for fire management applications. In ‘Fire in Ecosystem Management: Shifting the Paradigm from Suppression to Prescription, Tall Timbers Fire Ecology Conference Proceedings No. 20, Tall Timbers Research Station’. (Eds TL Pruden, LA Brennan) pp. 49–55.

Westerling ALHidalgo HGCayan DRSwetnam TW2006Warming and earlier spring increases western US forest wildfire activity.Science313940943doi:10.1126/SCIENCE.1128834

Export Citation Cited By (28)