International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE

Detection of clusters using space–time scan statistics

Marj Tonini A B , Devis Tuia A and Frédéric Ratle A

A Institute of Geomatics and Risk Analysis, University of Lausanne, Amphipôle, CH-1015 Lausanne, Switzerland.

B Corresponding author. Email: marj.tonini@unil.ch

International Journal of Wildland Fire 18(7) 830-836 http://dx.doi.org/10.1071/WF07167
Submitted: 26 November 2007  Accepted: 22 January 2009   Published: 27 October 2009

Abstract

This paper aims at detecting spatio-temporal clustering in fire sequences using space–time scan statistics, a powerful statistical framework for the analysis of point processes. The methodology is applied to active fire detection in the state of Florida (US) identified by MODIS (Moderate Resolution Imaging Spectroradiometer) during the period 2003–06. Results of the present study show that statistically significant clusters can be detected and localized in specific areas and periods of the year. Three out of the five most likely clusters detected for the entire frame period are localized in the north of the state, and they cover forest areas; the other two clusters cover a large zone in the south, corresponding to agricultural land and the prairies in the Everglades. In order to analyze if the wildfires recur each year during the same period, the analyses have been performed separately for the 4 years: it emerges that clusters of forest fires are more frequent in hot seasons (spring and summer), while in the southern areas, they are widely present during the whole year. The recognition of overdensities of events and the ability to locate them in space and in time can help in supporting fire management and focussing on prevention measures.

Additional keywords: Florida, MODIS active fires.


References

Bailey TC, Gatrell AC (1995) ‘Interactive Spatial Data Analysis.’ (Longman Scientific and Technical: Harlow, UK)

Besag JNewell J1991The detection of clusters in rare disease.J R Stat Soc A154143155doi:10.2307/2982708

Ceccato VHaining R2004Crime in border regions: the Scandinavian case of Öresund, 1998–2001.Annals of the Association of American Geographers94807826

Coulston JRiitters K2003Geographic analysis of forest health indicators using spatial scan statistics.Environmental Management31764773


Danfeng SDawson RBaoguo L2006Agricultural causes of desertification risk in Minqin, China.Journal of Environmental Management79348356
doi:10.1016/J.JENVMAN.2005.08.004

Fuquay DM, Baughman RG, Lathan DJ (1979) A model for predicting lightning fire ignition in wildland fuels. USDA Forest Service, Intermountain Forest and Range Experiment Station, Research Paper INT-217. (Ogden, UT)

Fuquay DM (1980) Lightning that ignites forest fires. In ‘Proceedings of the Sixth Conference on Fire and Forest Meteorology’, 22–24 April 1980, Seattle, WA. pp. 109–112. (Society of American Foresters: Washington, DC)

Genton MGButry DTGumpertz MLPrestemon JP2006Spatio-temporal analysis of wildfire ignitions in the St Johns River Water Management District, Florida.International Journal of Wildland Fire158797doi:10.1071/WF04034

Giglio LDescloitres JJustice COKaufman Y2003An enhanced contextual fire detection algorithm for MODIS.Remote Sensing of Environment87273282doi:10.1016/S0034-4257(03)00184-6

Hammer RBStewart SIWinkler RLRadeloff VCVoss PR2004Characterizing dynamic spatial and temporal residential density patterns from 1940–1990 across the national central United States.Landscape and Urban Planning69183199doi:10.1016/J.LANDURBPLAN.2003.08.011

Jefferis ES (1998) A Multi-Method Exploration of Crime Hot Spots: SaTScan results. In ‘1998 Academy of Criminal Justice Science (ACJS) Annual Conference’. (National Institute of Justice, Crime Mapping Research Center)

Justice COGiglio LKorontzi SOwens JMorisette JTRoy D2002The MODIS fire products.Remote Sensing of Environment83244262doi:10.1016/S0034-4257(02)00076-7

Kulldorff M1997A spatial scan statistic.Communications in Statistics2614811496doi:10.1080/03610929708831995

Kulldorff M (2006) SaTScanTM v7.0: Software for the spatial and space–time scan statistics. (Information Management Services, Inc.) Available at http://satscan.org [Verified 5 October 2009]

Kulldorff MAthas WFeuer EMiller BKey C1998Evaluating cluster alarms: a space–time scan statistic and brain cancer in Los Alamos.American Journal of Public Health8813771380doi:10.2105/AJPH.88.9.1377

Kulldorff MHeffernan RHartman JAssunção RMostashari F2005A space–time permutation scan statistic for disease outbreak detection.PLoS Medicine2e59doi:10.1371/JOURNAL.PMED.0020059

Kulldorff MSong CGregorio DSamociuk HDeChello L2006Cancer map patterns: are they random or not?American Journal of Preventive Medicine30S37S49doi:10.1016/J.AMEPRE.2005.09.009

Lasaponara RSantulli ATelesca L2004Time-clustering analysis of forest-fire sequences in southern Italy.Chaos, Solitons, and Fractals24139149

Lovejoy SSchertzer DLadoy P1986Fractal characterization of inhomogeneous geophysical measuring networks.Nature3194344
doi:10.1038/319043A0

Meisner BN (1993) A lightning fire ignition assessment model. In ‘Proceedings of the 12th Conference on Fire and Forest Meteorology’, 26–28 October 1993, Jekyll Island, GA. pp. 172–178. (Society of American Foresters)

Moran PAP1950Notes on continuous stochastic phenomena.Biometrika371723

Naus JI1965aClustering of random points in two dimensions.Biometrika52263267
doi:10.2307/2333829

Naus JI1965bThe distribution of the size of the maximum cluster of points on the line.Journal of the American Statistical Association60532538doi:10.2307/2282688

Openshaw SCharlton MWymer CCraft A1987A Mark I geographical analysis machine for the automated analysis of point data sets.International Journal of Geographical Information Systems1335358

Openshaw STurton IMacgill J1999Using the geographical analysis machine to analyze limiting long-term illness census data.Geographical and Environmental Modelling318399


Pyne SJ, Andrews PL, Laven RD (1996) ‘Introduction to Wildland Fire.’ 2nd edn. (Wiley: New York)

Riitters KHCoulston JW2005Hot spots of perforated forest in the eastern United States.Environmental Management35483492
doi:10.1007/S00267-003-0220-1

Ripley BD1977Modelling spatial patterns.Journal of the Royal Statistical Society. Series B. Methodological39172212

Rorig MLFerguson SA1999Characteristics of lighting and wildland fire ignition in the Pacific North-west.Journal of Applied Meteorology3815651575
doi:10.1175/1520-0450(1999)038<1565:COLAWF>2.0.CO;2

Schweitzer L2006Environmental justice and hazmat transport: a spatial analysis in southern California.Transportation Research Part D, Transport and Environment11408421doi:10.1016/J.TRD.2006.08.003

Shouls SCongdon PCurtis S1996Geographic variation in illness and mortality: the development of a relevant area typology for SAR districts.Health & Place2139155doi:10.1016/1353-8292(96)00002-0

Telesca LLasaponara R2006Emergence of temporal regimes in fire sequences.Physica A360543547doi:10.1016/J.PHYSA.2005.04.045

Telesca LAmatulli GLasaponara RLovallo MSantulli A2005Time-scaling properties in forest-fire sequences observed in Gargano area (southern Italy).Ecological Modelling.185531544doi:10.1016/J.ECOLMODEL.2005.01.009

Tuia DRatle FLasaponara RTelesca LKanevski M2008Scan statistics analysis of forest fire clusters.Communications in Nonlinear Science and Numerical Simulation13816891694

Turnbull BWIwano EJBurnett WSHowe HLClark LC1990Monitoring for clusters of disease: application to leukemia incidence in upstate New York.American Journal of Epidemiology132S136S143


Witham CSOppenheimer C2004Mortality in England during the 1783–4 Laki Craters eruption.Bulletin of Volcanology671526
doi:10.1007/S00445-004-0357-7



Export Citation Cited By (7)