International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE

Evaluating the potential of Landsat TM/ETM+ imagery for assessing fire severity in Alaskan black spruce forests

Elizabeth E. Hoy A E , Nancy H. F. French B , Merritt R. Turetsky C , Simon N. Trigg A D and Eric S. Kasischke A
+ Author Affiliations
- Author Affiliations

A Department of Geography, University of Maryland, 2181 LeFrak Hall, College Park, MD 20742, USA.

B Michigan Tech Research Institute, Michigan Technological University, 3600 Green Court, Suite 100, Ann Arbor, MI 48105, USA.

C Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.

D Department of Geographic Information Management, Cranfield University, Cranfield, Bedfordshire, UK.

E Corresponding author. Email: ehoy@umd.edu

International Journal of Wildland Fire 17(4) 500-514 https://doi.org/10.1071/WF08107
Submitted: 20 June 2008  Accepted: 26 June 2008   Published: 6 August 2008

Abstract

Satellite remotely sensed data of fire disturbance offers important information; however, current methods to study fire severity may need modifications for boreal regions. We assessed the potential of the differenced Normalized Burn Ratio (dNBR) and other spectroscopic indices and image transforms derived from Landsat TM/ETM+ data for mapping fire severity in Alaskan black spruce forests (Picea mariana) using ground measures of severity from 55 plots located in two fire events. The analysis yielded low correlations between the satellite and field measures of severity, with the highest correlation (R2adjusted = 0.52, P < 0.0001) between the dNBR and the composite burn index being lower than those found in similar studies in forests in the conterminous USA. Correlations improved using a ratio of two Landsat shortwave infrared bands (Band 7/Band 5). Overall, the satellite fire severity indices and transformations were more highly correlated with measures of canopy-layer fire severity than ground-layer fire severity. High levels of fire severity present in the fire events, deep organic soils, varied topography of the boreal region, and variations in solar elevation angle may account for the low correlations, and illustrate the challenges faced in developing approaches to map fire and burn severity in high northern latitude regions.

Additional keywords: composite burn index, Picea mariana, spectroscopic index.


Acknowledgements

The research in the paper was supported by NASA through Grant NNG04GD25G and the Bonanza Creek Long-Term Ecological Research program (USFS grant number PNW01-JV11261952–231 and NSF grant number DEB-0080609). We thank Evan Ellicott, Evan Kane, Gordon Shetler, Luz Silverio, Sam Upton, Richard Powell and Lucas Spaete for assisting in the collection of field data. We also thank the two anonymous reviewers who provided us with such valuable insight and direction.


References


Allen JL , Sorbel B (2008) Assessing the differenced Normalized Burn Ratio’s ability to map burn severity in the boreal forest and tundra ecosystems of Alaska’s national parks. International Journal of Wildland Fire  17, 463–475.
CrossRef |

Amiro BD, Todd JB, Wotton BM, Logan KA, Flannigan MD, Stocks BJ, Mason JA, Martell DL , Hirsch KG (2001) Direct carbon emissions from Canadian forest fires, 1959–1999. Canadian Journal of Forest Research  31, 512–525.
CrossRef |

Campbell J, Donato D, Azuma D , Law B (2007) Pyrogenic carbon emissions from a large wildfire in Oregon, United States. Journal of Geophysical Research  112, G04014.
CrossRef |

Chapin FS, Sturm M, Serreze MC, McFadden JP, Key JR, Lloyd AH, McGuire AD, Rupp TS, Lynch AH, Schimel JP, Beringer J, Chapman WL, Epstein HE, Euskirchen ES, Hinzman LD, Jia G, Ping CL, Tape KD, Thompson CDC, Walker DA , Welker JM (2005) Role of land-surface changes in Arctic summer warming. Science  310, 657–660.
CrossRef | PubMed |

Chavez PS (1989) Radiometric Calibration of Landsat Thematic Mapper Multispectral Images. Photogrammetric Engineering and Remote Sensing  55, 1285–1294.


Cohen WB , Spies TA (1992) Estimating structural attributes of Douglas-Fir/Western Hemlock forest stands from Landsat and SPOT imagery. Remote Sensing of Environment  41, 1–17.
CrossRef |

Colby JD (1991) Topographic normalization in rugged terrain. Photogrammetric Engineering and Remote Sensing  57, 531–537.


Crist EP (1985) A TM tasseled cap equivalent transformation for reflectance factor data. Remote Sensing of Environment  17, 301–306.
CrossRef |

de Groot W, Landry R, Kurz W, Anderson K, Englefield P, Fraser RH, Hall RJ, Banfield E, Raymond D, Decker V, Lynham T , Pritchard J (2007) Estimating direct carbon emissions from Canadian wildland fires. International Journal of Wildland Fire  16, 593–606.
CrossRef |

Ekstrand S (1996) Landsat-TM based forest damage assessment: correction for topographic effects. Photogrammetric Engineering and Remote Sensing  62, 151–161.


Epting J, Verbyla D , Sorbel B (2005) Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+. Remote Sensing of Environment  96, 328–339.
CrossRef |

French NHF, Goovaerts P , Kasischke ES (2004) Uncertainty in estimating carbon emissions from boreal forest fires. Journal of Geophysical Research  109, D14S08..
CrossRef |

French NHF, Allen JL, Hall RH, Hoy EE, Kasischke ES, Murphy KA , Verbyla DL (2008) Using landsat data to assess fire and burn severity in the North American boreal forest region: an overview and summary of results. International Journal of Wildland Fire  17, 443–462.
CrossRef |

Gillett NP, Weaver AJ, Zwiers FW , Flannigan MD (2004) Detecting the effect of climate change on Canadian forest fires. Geophysical Research Letters  31, L18211.
CrossRef |

Gu D , Gillespie A (1998) Topographic normalization of Landsat TM images of forest based on subpixel sun–canopy–sensor geometry. Remote Sensing of Environment  64, 166–175.
CrossRef |

Holden ZA, Morgan P, Crimmins M, Steinhorst R , Smith AMS (2007) Fire season precipitation variability influences fire extent and severity in a large southwestern wilderness area, United States. Geophysical Research Letters  34, L16708.
CrossRef |

Huang C, Wylie B, Yang L, Homer C , Zylstra G (2002) Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance. International Journal of Remote Sensing  23, 1741–1748.
CrossRef |

Hudak AT , Brockett BH (2004) Mapping fire scars in a southern African savannah using Landsat imagery. International Journal of Remote Sensing  25, 3231–3243.
CrossRef |

Huete AR (1988) A Soil-Adjusted Vegetation Index (SAVI). Remote Sensing of Environment  25, 295–309.
CrossRef |

Isaev AS, Korovin GN, Bartalev SA, Ershov DV, Janetos A, Kasischke ES, Shugart HH, French NH, Orlick BE , Murphy TL (2002) Using remote sensing to assess Russian forest fire carbon emissions. Climatic Change  55, 235–249.
CrossRef |

Jain TB (2004) Tongue-tied: confused meanings for common fire terminology can lead to fuels mismanagement. Wildfire , , 22–26.


Kajii Y, Kato S, Streets D, Tsai N, Shvidenko A, Nilsson S, McCallum I, Minko N, Abushenko N, Altyntsev D , Khodzer T (2002) Boreal forest fires in Siberia in 1998: estimation of area burned and emissions of pollutants by advanced very high resolution radiometer data. Journal of Geophysical Research  107, 4745.
CrossRef |

Kasischke ES , Johnstone JF (2005) Variation in postfire organic layer thickness in a black spruce forest complex in interior Alaska and its effects on soil temperature and moisture. Canadian Journal of Forest Research  35, 2164–2177.
CrossRef |

Kasischke ES , Turetsky MR (2006) Recent changes in the fire regime across the North American boreal region – Spatial and temporal patterns of burning across Canada and Alaska. Geophysical Research Letters  33, L09703.
CrossRef |

Kasischke ES, French NHF, Bourgeau-Chavez LL , Christensen NL (1995) Estimating release of carbon from 1990 and 1991 forest fires in Alaska. Journal of Geophysical Research  100, 2941–2951.
CrossRef |

Kasischke ES, O’Neill KP, French NHF, Bourgeau-Chavez LL (2000) Controls on patterns of biomass burning in Alaskan boreal forests. In ‘Fire, Climate Change, and Carbon Cycling in the North American Boreal Forest’. (Eds E Kasischke, B Stocks) pp. 173–196. (Springer-Verlag: New York)

Kasischke ES, Hyer E, Novelli P, Bruhwiler L, French NHF, Sukhinin AI, Hewson JH , Stocks BJ (2005) Influences of boreal fire emissions on Northern Hemisphere atmospheric carbon and carbon monoxide. Global Biogeochemical Cycles  19, GB1012..
CrossRef |

Kasischke ES, Turetsky MR, Ottmar RD, French NHF, Hoy EE , Kane ES (2008) Evaluation of the composite burn index for assessing fire severity in Alaskan black spruce forests. International Journal of Wildland Fire  17, 515–526.
CrossRef |

Key CH, Benson NC (2006) FIREMON Landscape Assessment (LA): Sampling and Analysis Methods. USDA Forest Service, Rocky Mountain Research Station, General Technical Report, RMRS-GTR-164-CD. (Fort Collins, CO)

Kokaly R, Rockwell B, Haire S , King T (2007) Characterization of post-fire surface cover, soils, and burn severity at the Cerro Grande Fire, New Mexico, using hyperspectral and multispectral remote sensing. Remote Sensing of Environment  106, 305–325.
CrossRef |

NASA Goddard Space Flight Center (2008) ‘Landsat 7 Science Data Users Handbook.’ (Landsat Project Science Office: Greenbelt, MD) Available at http://landsathandbook.gsfc.nasa.gov/handbook/handbook_toc.html [Verified 2008]

Lentile LB, Holden ZA, Smith AMS, Falkowski MJ, Hudak AT, Morgan P, Lewis SA, Gessler PE , Benson NC (2006) Remote sensing techniques to assess active fire characteristics and post-fire effects. International Journal of Wildland Fire  15, 319–345.
CrossRef |

Michalek JL, French NHF, Kasischke ES, Johnson RD , Colwell JE (2000) Using Landsat TM data to estimate carbon release from burned biomass in an Alaskan spruce forest complex. International Journal of Remote Sensing  21, 323–338.
CrossRef |

Miller JD , Thode AE (2007) Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sensing of Environment  109, 66–80.
CrossRef |

Patterson MW , Yool SR (1998) Mapping fire-induced vegetation mortality using Landsat Thematic Mapper data: A comparison of linear transform techniques. Remote Sensing of Environment  65, 132–142.
CrossRef |

Qi J, Chehbouni A, Huete AR, Kerr YH , Sorooshian S (1994) A Modified Soil Adjusted Vegetation Index. Remote Sensing of Environment  48, 119–126.
CrossRef |

Rogan J, Franklin J , Roberts DA (2002) A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery. Remote Sensing of Environment  80, 143–156.
CrossRef |

Roy DP, Boschetti L , Trigg SN (2006) Remote sensing of fire severity: Assessing the performance of the normalized burn ratio. IEEE Geoscience and Remote Sensing Letters  3, 112–116.
CrossRef |

Skinner WR, Shabar A, Flannigan MD , Logan K (2006) Large forest fires in Canada and the relationship to global sea surface temperatures. Journal of Geophysical Research  111, D14106.
CrossRef |

Smith AMS, Wooster MJ, Drake NA, Dipotso FM, Falkowski MJ , Hudak AT (2005) Testing the potential of multi-spectral remote sensing for retrospectively estimating fire severity in African Savannahs. Remote Sensing of Environment  97, 92–115.
CrossRef |

Soja AJ, Cofer RW, Shugart HH, Sukhinin AI, Stackhouse PWJ, McRae DJ , Conard SG (2004) Estimating fire emissions and disparities in boreal Siberia (1998–2002). Journal of Geophysical Research  109, D14S06.
CrossRef |

Trigg S , Flasse S (2001) An evaluation of different bi-spectral spaces for discriminating burned shrub-savannah. International Journal of Remote Sensing  22, 2641–2647.
CrossRef |

van der Werf G, Randerson JT, Giglio L, Collatz G, Kasibhatla P , Arellano A (2006) Interannual variability of global biomass burning emissions from 1997 to 2004. Atmospheric Chemistry and Physics  6, 3423–3441.


van Wagtendonk JW, Root R , Key CH (2004) Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity. Remote Sensing of Environment  92, 397–408.
CrossRef |

Verbyla DL, Kasischke ES , Hoy EE (2008) Seasonal and topographic effects on estimating fire severity from Landsat TM/ETM+ data. International Journal of Wildland Fire  17, 527–534.
CrossRef |

Zhu Z, Key C, Ohlen D, Benson N (2006) Evaluate Sensitivities of Burn-Severity Mapping Algorithms for Different Ecosystems and Fire Histories in the United States. Department of Interior Final Report to the Joint Fire Science Program, JFSP 01-1-4-12. (Sioux Falls, SD)



Export Citation Cited By (54)