International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE

Climate, lightning ignitions, and fire severity in Yosemite National Park, California, USA

James A. Lutz A E , Jan W. van Wagtendonk B , Andrea E. Thode C , Jay D. Miller D and Jerry F. Franklin A
+ Author Affliations
- Author Affliations

A College of the Environment, University of Washington, Box 352100, Seattle, WA 98195, USA.

B US Geological Survey, Western Ecological Research Center, Yosemite Field Station, El Portal, CA 95318, USA.

C School of Forestry, Northern Arizona University, Box 15018, Flagstaff, AZ 86011, USA.

D US Forest Service, 3237 Peacekeeper Way, Suite 101, McClellan, CA 95652, USA.

E Corresponding author. Email: jlutz@u.washington.edu

International Journal of Wildland Fire 18(7) 765-774 https://doi.org/10.1071/WF08117
Submitted: 8 July 2008  Accepted: 23 December 2008   Published: 27 October 2009

Abstract

Continental-scale studies of western North America have attributed recent increases in annual area burned and fire size to a warming climate, but these studies have focussed on large fires and have left the issues of fire severity and ignition frequency unaddressed. Lightning ignitions, any of which could burn a large area given appropriate conditions for fire spread, could be the first indication of more frequent fire. We examined the relationship between snowpack and the ignition and size of fires that occurred in Yosemite National Park, California (area 3027 km2), between 1984 and 2005. During this period, 1870 fires burned 77 718 ha. Decreased spring snowpack exponentially increased the number of lightning-ignited fires. Snowpack mediated lightning-ignited fires by decreasing the proportion of lightning strikes that caused lightning-ignited fires and through fewer lightning strikes in years with deep snowpack. We also quantified fire severity for the 103 fires >40 ha with satellite fire-severity indices using 23 years of Landsat Thematic Mapper data. The proportion of the landscape that burned at higher severities and the complexity of higher-severity burn patches increased with the log10 of annual area burned. Using one snowpack forecast, we project that the number of lightning-ignited fires will increase 19.1% by 2020 to 2049 and the annual area burned at high severity will increase 21.9%. Climate-induced decreases in snowpack and the concomitant increase in fire severity suggest that existing assumptions may be understated – fires may become more frequent and more severe.

Additional keywords: burn severity, climate change, climate variability, fire regime attributes, landscape flammability, normalized burn ratio, patch complexity, RdNBR, Sierra Nevada, snowpack, snow water equivalent.


Acknowledgements

We thank Yosemite National Park, the US Geological Survey Western Ecological Research Center, and the California Department of Water Resources for data and data management. We thank J. K. Agee, A. J. Larson, D. McKenzie, and A. L. Westerling for discussions. Comments from J. A. Freund, A. R. Gillespie, C. B. Halpern, T. M. Hinckley, D. G. Sprugel, and two anonymous reviewers improved previous versions of this manuscript. This research was supported by National Science Foundation IGERT (0333408) and the Seattle ARCS Foundation.


References


Agee JK (2003) Burning issues in fire: will we let the coarse filter operate? In ‘Proceedings of Fire Conference 2000’, Tallahassee, FL. (Eds KEM Galley, RC Klinger, NG Sugihara) Tall Timbers Research Station Miscellaneous Publication 13, pp. 7–13. (Tallahassee, FL)

Bartlein PJ, Hostetler SW, Shafer SL, Holman JO , Solomon AM (2008) Temporal and spatial structure in a daily wildfire-start data set from the western United States (1986–96). International Journal of Wildland Fire  17, 8–17.
CrossRef |

CDWR (2007) Snow conditions. Database. (California Department of Water Resources) Available at http://cdec.water.ca.gov/snow/ [Verified 12 September 2009]

Caprio AC, Swetnam TW (1995) Historic fire regimes along an elevational gradient on the west slope of the Sierra Nevada, California. In ‘Proceedings of the Symposium on Fire in Wilderness and Park Management’. (Eds JK Brown, RW Mutch CW Spoon, RH Wakimoto) USDA Forest Service, Intermountain Research Station, General Technical Report INT-GTR-320, pp. 173–179. (Ogden, UT)

Church JE (1933) Snow surveying: its principles and possibilities. Geographical Review  23, 529–563.
CrossRef |

Church JE (1935) Principles of snow surveying as applied to forecasting stream flow. Journal of Agricultural Research  51, 97–130.


Collins BM, Kelly NM, van Wagtendonk JW , Stephens SL (2007) Spatial patterns of large natural fires in Sierra Nevada wilderness areas. Landscape Ecology  22, 545–557.
CrossRef |

Daly C, Halbleib M, Smith JI, Gibson WP, Doggett MK, Taylor WP, Curtis J , Pasteris PP (2008) Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. International Journal of Climatology  28, 2031–2064.
CrossRef |

Eberhart KE , Woodard PM (1987) Distribution of residual vegetation associated with large fires in Alberta. Canadian Journal of Forest Research  17, 1207–1212.
CrossRef |

Field CB, Mortsch LD, Brklacich M, Forbes DL, Kovacs P, Patz JA, Running SW, Scott MJ (2007) ‘North America. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change’. (Eds ML Parry, OF Canziani, JP Palutikof, PJ van der Linden, CE Hanson) pp. 617–652. (Cambridge University Press: Cambridge, UK)

Fites-Kaufman JA, Rundel P, Stephenson N, Weixelman DA (2007) Montane and subalpine vegetation of the Sierra Nevada and Cascade ranges. In ‘Terrestrial Vegetation of California’. (Eds M Barbour, T Keeler-Wolf, AA Schoenherr) pp. 456–501. (University of California Press: Berkeley, CA)

Flannigan MD, Logan KA, Amiro BD, Skinner WR , Stocks BJ (2005) Future area burned in Canada. Climatic Change  72, 1–16.
CrossRef | CAS |

Franklin JF, Fites-Kaufman J (1996) Assessment of late-successional forests of the Sierra Nevada. In ‘Sierra Nevada Ecosystem Project: Final Report to Congress, Volume II, Assessments and Scientific Basis for Management Options’. pp. 627–661. (University of California, Centers for Water and Wildland Resources: Davis, CA)

French NHF, Kasischke ES, Hall RJ, Murphy KA, Verbyla DL, Hoy EE , Allen JL (2008) Using Landsat data to assess fire and burn severity in the North American boreal forest region: an overview and summary of results. International Journal of Wildland Fire  17, 443–462.
CrossRef |

Frohn RC (1998) ‘Remote Sensing for Landscape Ecology: New Metric Indicators for Monitoring, Modeling, and Assessment of Ecosystems.’ (Lewis Publishers, CRC Press: Boca Raton, FL)

Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB , Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics  16, 147–168.
CrossRef |

Graber DM (2003) Facing a new ecosystem management paradigm for national parks. Ecological Research  21, 264–268.
CrossRef |

Hayhoe K, Cayan D, Field CB, Frumhoff PC, Maurer EP, Miller NL, Moser SC , Schneider SH (2004) Emissions pathways, climate change, and impacts on California. Proceedings of the National Academy of Sciences of the United States of America  101, 12 422–12 427.
CrossRef | CAS |

Heyerdahl EK, Brubaker LB , Agee JK (2001) Spatial controls of historical fire regimes: a multiscale example from the interior west, USA. Ecology  82, 660–678.


Keeling CD, Whorf TP, Wahlen M , van der Plicht J (1995) Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature  375, 666–670.
CrossRef | CAS |

Keeton WS , Franklin JF (2005) Do remnant old-growth trees accelerate rates of succession in mature Douglas-fir forests? Ecological Monographs  75, 103–118.
CrossRef |

Key CH (2006) Ecological and sampling constraints on defining landscape fire severity. Fire Ecology  2(2), 34–59.


Key CH, Benson NC (2006) Landscape assessment: ground measure of severity, the Composite Burn Index, and remote sensing of severity, the Normalized Burn Ratio. In ‘FIREMON: Fire Effects Monitoring and Inventory System’. (Eds DC Lutes, RE Keane, JF Caratti, CH Key, NC Benson, S Sutherland, LJ Gangi) USDA Forest Service, Rocky Mountain Research Station, General Technical Report RMRS-GTR-164CD, pp. LA1–LA55. (Fort Collins, CO)

Kilgore BM , Taylor D (1979) Fire history of a sequoia mixed conifer forest. Ecology  60, 129–142.
CrossRef |

Knowles N, Dettinger MD , Cayan DR (2006) Trends in snowfall versus rainfall in the western United States. Journal of Climate  19, 4545–4559.
CrossRef |

Langley PG (1996) Quality assessment of late seral old-growth forest mapping. In ‘Sierra Nevada Ecosystem Project: Final Report to Congress, Volume II, Assessments and Scientific Basis for Management Options’. pp. 663–669. (University of California, Centers for Water and Wildland Resources: Davis, CA)

Larson AJ, Lutz JA, Gersonde RF, Franklin JF , Hietpas FF (2008) Productivity influences the rate of forest structural development. Ecological Applications  18, 899–910.
CrossRef | PubMed |

Littell JS, McKenzie D, Peterson DL , Westerling AL (2009) Climate and wildfire area burned in western US ecoprovinces, 1916–2003. Ecological Applications  19, 1003.
CrossRef | PubMed |

Lutz JA (2008) Climate, fire, and vegetation change in Yosemite National Park. Ph.D. Dissertation. University of Washington, College of Forest Resources, Seattle, Washington, USA.

Lutz JA, van Wagtendonk JW , Franklin JF (2009) Twentieth-century decline of large-diameter trees in Yosemite National Park, California, USA. Forest Ecology and Management  257, 2296–2307.
CrossRef |

McGarigal K, Cushman SA, Neel MC, Ene E (2002) ‘FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps.’ (University of Massachusetts: Amherst, MA)

McKenzie D, Gedalof Z, Peterson DL , Mote P (2004) Climatic change, wildfire, and conservation. Conservation Biology  18, 890–902.
CrossRef |

Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) ‘Global Climate Projections in Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change’. (Eds S Solomon, D Qin, M Manning, Z Chen, M Marquis, KB Averyt, M Tignor, HL Miller) pp. 747–845. (Cambridge University Press: Cambridge, UK)

Miller C , Urban DL (1999) Interactions between forest heterogeneity and surface fire regimes in the southern Sierra Nevada. Canadian Journal of Forest Research  29, 202–212.
CrossRef |

Miller JD , Thode AE (2007) Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sensing of Environment  109, 66–80.
CrossRef |

Miller JD, Safford HD, Crimmins M , Thode AE (2008) Quantitative evidence for increasing forest fire severity in the Sierra Nevada and southern Cascade Mountains, California and Nevada, USA. Ecosystems  12, 16–32.
CrossRef |

Mote PW, Hamet AF, Clark MP , Lettenmaier DP (2005) Declining mountain snowpack in western North America. Bulletin of the American Meteorological Society  86, 39–49.
CrossRef |

Nakićenović N, Davidson O, Davis G, Grübler A, Kram T, La Rovere EL, Metz B, Morita T, Pepper W, Pitcher H, Sankovski A, Shukla P, Swart R, Watson R, Dadi Z (2000) ‘Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios.’ (Cambridge University Press: Cambridge, UK)

Pope VD, Gallani ML, Rowntree PR , Stratton RA (2000) The impact of new physical parameterizations in the Hadley Centre climate model: HadAM3. Climate Dynamics  16, 123–146.
CrossRef |

Price C , Rind D (1994a) Possible implications of global climate change on global lightning distributions and frequencies. Journal of Geophysical Research  99, 10 823–10 831.
CrossRef |

Price C , Rind D (1994b) The impact of a 2 × CO2 climate on lightning-caused fires. Journal of Climate  7, 1484–1494.
CrossRef |

PRISM (2007) ‘Climatological Normals, 1971–2000.’ (Oregon State University: Corvallis, OR)

Roberts SL, van Wagtendonk JW, Kelt DA, Miles AK , Lutz JA (2008) Modeling the effects of fire severity and spatial complexity on small mammals in Yosemite National Park, California, USA. Fire Ecology  4, 83–104.


Rothman HK (2007) ‘Blazing Heritage: a History of Wildland Fire in the National Parks.’ (Oxford University Press: New York)

Russell CP (1992) ‘One Hundred Years in Yosemite.’ (Yosemite Association: El Portal, CA)

Stephens SL (2001) Fire history differences in adjacent Jeffrey pine and upper montane forests in the eastern Sierra Nevada. International Journal of Wildland Fire  10, 161–167.
CrossRef |

Stephens SL , Elliott-Fisk DL (1999) Sequioadendron giganteum–mixed conifer forest structure in 1900–1901 from the southern Sierra Nevada. Madrono  45, 221–230.


Sugihara NG, van Wagtendonk JW, Fites-Kaufman J, Shaffer KE, Thode AE (2006) Fire as an ecological process. In ‘Fire in California’s Ecosystems’. (Eds NG Sugihara, JW van Wagtendonk, KE Shaffer, J Fites-Kaufman, AE Thode) pp. 58–74. (University of California Press: Berkeley, CA)

Swetnam TW, Allen CD , Betancourt JL (1999) Applied historical ecology: using the past to manage for the future. Ecological Applications  9, 1189–1206.
CrossRef |

Thode AE (2005) Quantifying the fire regime attributes of severity and spatial complexity using field and imagery data. PhD Dissertation, University of California, Davis, CA.

Thompson JR, Spies TA , Ganio LM (2007) Reburn severity in managed and unmanaged vegetation in a large wildfire. Proceedings of the National Academy of Sciences of the United States of America  104, 10 743–10 748.
CrossRef | CAS |

Turner MG, Romme WH, Gardner RH , Hargrove WW (1997) Effects of fire size and pattern on early succession in Yellowstone National Park. Ecological Monographs  67, 411–433.


van Mantgem PJ, Stephenson NL, Keifer M , Keeley J (2004) Effects of an introduced pathogen and fire exclusion on the demography of sugar pine. Ecological Applications  14, 1590–1602.
CrossRef |

van Wagtendonk JW (1994) Spatial patterns of lightning strikes and fires in Yosemite National Park. In ‘Proceedings of the 12th Conference on Fire and Forest Meteorology’. pp. 223–231. (Society of American Foresters: Bethesda, MD)

van Wagtendonk JW (2006) Fire as a physical process. 2006. In ‘Fire in California’s Ecosystems’. (Eds NG Sugihara, JW van Wagtendonk, KE Shaffer, J Fites-Kaufman, AE Thode) pp. 38–57. (University of California Press: Berkeley, CA)

van Wagtendonk JW (2007) The history and evolution of wildland fire use. Fire Ecology  3(2), 3–17.


van Wagtendonk JW , Cayan D (2008) Spatial patterns of lightning strikes and fires in California. Fire Ecology  4(1), 34–56.


van Wagtendonk JW, Fites-Kaufman J (2006) Sierra Nevada bioregion. In ‘Fire in California’s Ecosystems’. (Eds NG Sugihara, JW van Wagtendonk, KE Shaffer, J Fites-Kaufman, AE Thode) pp. 264–294. (University of California Press: Berkeley, CA)

van Wagtendonk JW , Lutz JA (2007) Fire regime attributes of wildland fires in Yosemite National Park, USA. Fire Ecology  3(2), 34–52.


van Wagtendonk JW, Benedict JM , Sydoriak WM (1998) Fuel bed characteristics of Sierra Nevada conifers. Western Journal of Applied Forestry  13(3), 73–84.


van Wagtendonk JW, van Wagtendonk KA, Meyer JB , Painter KJ (2002) The use of geographic information for fire management planning in Yosemite National Park. The George Wright Forum  19, 19–39.


van Wagtendonk JW, Root RR , Key CH (2004) Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity. Remote Sensing of Environment  92, 397–408.
CrossRef |

Verbyla DL, Kasischke ES , Hoy EE (2008) Seasonal and topographic effects on estimating fire severity from Landsat TM/ETM+ data. International Journal of Wildland Fire  17, 527–534.
CrossRef |

Westerling AL, Hidalgo HG, Cayan DR , Swetnam TW (2006) Warming and earlier spring increase in western US forest wildfire activity. Science  313, 940–943.
CrossRef | CAS | PubMed |

Woodhouse CA (2003) A 431-year reconstruction of western Colorado snowpack from tree rings. Journal of Climate  16(10), 1551–1561.



Export Citation Cited By (50)