Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Effective enhancement of CO2 capture performance of solid amine adsorbents prepared from diethylenetriamine-modified mesoporous silica: optimisation experiments and kinetic calculations

Huipeng Zhao A # , Jingsi Yang A # , Heli Tian A , Kunjie Li https://orcid.org/0000-0002-1742-6433 A * , Ruihong Zhao A C * , Xiaoqing Liu A , Pingxia Zhang B , Xiaoxue Niu A , Guicai Wu D and Haoming Li E
+ Author Affiliations
- Author Affiliations

A College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050091, PR China.

B Key Laboratory of Science and Technology On High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China.

C Hebei Provincial Science and Technology Innovation Think Tank-Carbon peaking and Carbon Neutrality Technology Innovation, Shijiazhuang, 050018, PR China.

D Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, PR China.

E Beijing Academy, Beijing, 100190, PR China.


# These authors contribute equally to this work.

Handling Editor: Martyn Coles

Australian Journal of Chemistry 78, CH25056 https://doi.org/10.1071/CH25056
Submitted: 16 April 2025  Accepted: 15 August 2025  Published online: 5 September 2025

© 2025 The Author(s) (or their employer(s)). Published by CSIRO Publishing.

Abstract

In this study, four DETA-SiO2 solid amine adsorbents were prepared by an impregnation method using diethylenetriamine (DETA) as the amine source and four types of silica with different pore structures as the carrier, and the effects of varying amine concentrations, temperatures and pressures on the CO2 adsorption performance were investigated. The results showed that the prepared N-MCM-48-C material reached a maximum CO2 adsorption of 417.45 mg g−1 at 25°C and 0.5 MPa. The effect of pressure on the adsorption performance was verified by kinetic calculations using the intraparticle diffusion model and the Thomas dynamic adsorption model. The presence of surfactant (CTAB) inside the carrier diluted the amine concentration, which improved the homogenisation of the amine on the carrier and increased the CO2 mass transfer efficiency and adsorption capacity. Multiple pressure swing adsorption (PSA) experiments have shown that N-MCM-48-C material has stable adsorption performance during the PSA process and the adsorption capacity can reach 300 mg g−1.

Keywords: adsorption, CO2 capture, DETA, kinetic calculations, load, pressure, SiO2, solid amine adsorbent.

References

Soo XYD, Lee JJC, Wu W-Y, Tao L, Wang C, Zhu Q, Bu J. Advancements in CO2 capture by absorption and adsorption: a comprehensive review. J CO2 Utili 2024; 81: 102727.
| Crossref | Google Scholar |

Pietzcker RC, Osorio S, Rodrigues R. Tightening EU ETS targets in line with the European Green Deal: impacts on the decarbonization of the EU power sector. Appl Energy 2021; 293: 116914.
| Crossref | Google Scholar |

Yang L, Zhang J, Li X, Zhu N, Liu Y. The moderating effect of emission reduction policies on CCS mitigation efficiency. Appl Energy 2024; 376: 124303.
| Crossref | Google Scholar |

Cheng H, Fan Y, Tarlet D, Luo L, Fan Z. Microfluidic-based chemical absorption technology for CO2 capture: mass transfer dynamics, operating factors and performance intensification. Renew Sustain Energy Rev 2023; 181: 113357.
| Crossref | Google Scholar |

Puga A, Yousefe M, Glińska K, Garcia-Valls R, Giamberini M. Hydrated carboxylate ionic liquids as chemical CO2 sorbents of high capacity and moderate enthalpy of absorption. Sep Purif Technol 2025; 354: 128443.
| Crossref | Google Scholar |

Fan J, Zhang X, He N, Song F, Zhang X. Physical absorption and thermodynamic modeling of CO2 in new deep eutectic solvents. J Mol Liq 2024; 402: 124752.
| Crossref | Google Scholar |

Cui H, Xu J, Yan N, Yan R, Shi J, Weng Y. Synthesis of nitrogen enriched porous carbon sponge with the assistance of hard template and physical activation for highly efficient CO2 adsorption. J Environ Chem Eng 2024; 12(5): 113808.
| Crossref | Google Scholar |

Jivrakh KB, Varghese AM, Ehrling S, Kuppireddy S, Polychronopoulou K, Abu Al-Rub RK, Alamoodi N, Karanikolos GN. 3D-printed zeolite 13X gyroid monolith adsorbents for CO2 capture. Chem Eng J 2024; 497: 154674.
| Crossref | Google Scholar |

Gebremariam SK, Varghese AM, Kuppireddy S, Al Wahedi Y, AlHajaj A, Karanikolos GN, Dumée LF. MOF@MOF core-shell hybrid adsorbents with controlled water vapor affinity towards enhanced and steady CO2 capture in moist conditions. Carbon Capture Sci Technol 2025; 14: 100356.
| Crossref | Google Scholar |

10  Nazir G, Rehman A, Ikram M, Aslam M, Zhang TC, Khalid A, Aftab S, Hussain S, Almukhlifi HA, Abdel Hafez AA, Heo K. Facile synthesis of inherently nitrogen-doped PAN-derived microporous carbons activated with NaNH2 for selective CO2 adsorption and separation. Chem Eng J 2024; 497: 154704.
| Crossref | Google Scholar |

11  Li G, Kujawa J, Knozowska K, Kareiva A, Favre E, Castel C, Kujawski W. The advancements in mixed matrix membranes containing functionalized MOFs and 2D materials for CO2/N2 separation and CO2/CH4 separation. Carbon Capture Sci Technol 2024; 13: 100267.
| Crossref | Google Scholar |

12  Wu S-Y, Hsiao IC, Liu C-M, Mt Yusuf NY, Wan Isahak WNR, Masdar MS. A novel bio-cellulose membrane and modified adsorption approach in CO2/H2 separation technique for PEM fuel cell applications. Int J Hydrog Energy 2017; 42(45): 27630-27640.
| Crossref | Google Scholar |

13  Yan Z, Zheng W, Liu S, Luo X, Huang Y, Jin B, Gao H, Xiao M, Liang Z. Process simulation and optimization for post-combustion CO2 capture pilot plant using high CO2 concentration flue gas as a source. Sep Purif Technol 2024; 349: 127873.
| Crossref | Google Scholar |

14  Wadi VS, Varghese AM, Kuppireddy S, Shimoga G, Karanikolos GN, Alhassan SM. Three-dimensional graphene with the decoration of elemental sulfur-based sulfur-nitrogen dots for CO2 capture. J Environ Chem Eng 2024; 12(4): 113130.
| Crossref | Google Scholar |

15  Bharat Jivrakh K, Kuppireddy S, Taher SE, Polychronopoulou K, Abu Al-Rub R, Alamoodi N, Karanikolos GN. Zeolite-coated 3D-printed gyroid scaffolds for carbon dioxide adsorption. Sep Purif Technol 2024; 346: 127523.
| Crossref | Google Scholar |

16  Zhang L, Li Y, Zhou H. Preparation and characterization of DBU-loaded MCM-41 for adsorption of CO2. Energy 2018; 149: 414-423.
| Crossref | Google Scholar |

17  Li X, Li R, Peng K, Zhao K, Bai M, Li H, Gao W, Gong Z. Amine-impregnated porous carbon–silica sheets derived from vermiculite with superior adsorption capability and cyclic stability for CO2 capture. Chem Eng J 2023; 464: 142662.
| Crossref | Google Scholar |

18  Zhao J, Zhang W, Wang Q, Shen D, Wang Z. Lignin-derived porous carbons for efficient CO2 adsorption. Carbon Capture Sci Technol 2024; 13: 100233.
| Crossref | Google Scholar |

19  Wan Z, Hunt R, White C, Gillbanks J, Czapla J, Xiao G, Surin S, Wood C. Facile synthesis of self‐supported solid amine sorbents for direct air capture. ChemSusChem 2024; 17: e202400212.
| Crossref | Google Scholar | PubMed |

20  Wang J, Zhou Y, Hu X. Adsorption of CO2 by a novel zeolite doped amine modified ternary aerogels. Environ Res 2022; 214: 113855.
| Crossref | Google Scholar | PubMed |

21  Henrotin A, Heymans N, Duprez ME, Mouchaham G, Serre C, Wong D, Robinson R, Mulrooney D, Casaban J, De Weireld G. Lab-scale pilot for CO2 capture vacuum pressure swing adsorption: MIL-160(Al) vs zeolite 13X. Carbon Capture Sci Technol 2024; 12: 100224.
| Crossref | Google Scholar |

22  Jerome MP, Mathai Varghese A, Kuppireddy S, Karanikolos GN, Alamoodi N. Upcycling paper waste into aminosilane-functionalized cellulose-graphene oxide composite aerogel adsorbents for low-pressure CO2 capture. Sep Purif Technol 2025; 360: 131089.
| Crossref | Google Scholar |

23  Chen Y, Zhang J, Liu H, Wang X, Chen S. A surfactant modified solid amine adsorbent to enhance CO2 adsorption performance. Colloids Surf – A. Physicochem Eng Asp 2023; 677: 132323.
| Crossref | Google Scholar |

24  Zhao P, Zhang G, Yan H, Zhao Y. The latest development on amine functionalized solid adsorbents for post-combustion CO2 capture: analysis review. Chin J Chem Eng 2021; 35: 17-43.
| Crossref | Google Scholar |

25  Nie L, Mu Y, Jin J, Chen J, Mi J. Recent developments and consideration issues in solid adsorbents for CO2 capture from flue gas. Chin J Chem Eng 2018; 26(11): 2303-2317.
| Crossref | Google Scholar |

26  Chen C, Zhang S, Row KH, Ahn W-S. Amine–silica composites for CO2 capture: a short review. J Energy Chem 2017; 26(5): 868-880.
| Crossref | Google Scholar |

27  Qian X, Yang J, Fei Z, Liu Q, Zhang Z, Chen X, Tang J, Cui M, Qiao X. A simple strategy to improve PEI dispersion on MCM-48 with long-alkyl chains template for efficient CO2 adsorption. Ind Eng Chem Res 2019; 58(25): 10975-10983.
| Crossref | Google Scholar |

28  Heydari-Gorji A, Belmabkhout Y, Sayari A. Polyethylenimine-impregnated mesoporous silica: effect of amine loading and surface alkyl chains on CO2 adsorption. Langmuir 2011; 27(20): 12411-12416.
| Crossref | Google Scholar | PubMed |

29  Li W, Fu D. Synergistic effect of surfactant and silica nanoflowers support on CO2 capture from simulated flue gas by solid amine adsorbents. Chem Phys Lett 2024; 843: 141244.
| Crossref | Google Scholar |

30  Zhang L, Wang X, Fujii M, Yang L, Song C. CO2 capture over molecular basket sorbents: effects of SiO2 supports and PEG additive. J Energy Chem 2017; 26(5): 1030-1038.
| Crossref | Google Scholar |

31  Borcănescu S, Popa A, Verdeș O, Suba M. Functionalized ordered mesoporous MCM-48 silica: synthesis, characterization and adsorbent for CO2 capture. Int J Mol Sci 2023; 24(12): 10345.
| Crossref | Google Scholar | PubMed |

32  Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 2015; 87(9–10): 1051-1069.
| Crossref | Google Scholar |

33  Meléndez-Ortiz HI, Perera-Mercado Y, Mercado-Silva JA, Olivares-Maldonado Y, Castruita G, García-Cerda LA. Functionalization with amine-containing organosilane of mesoporous silica MCM-41 and MCM-48 obtained at room temperature. Ceram Int 2014; 40(7, Part A): 9701-9707.
| Crossref | Google Scholar |

34  Gundanna SK, Mitra A, Bhatta LKG, Bhatta UM. Effect of thermal treatment on the surface/interfacial behaviour of Au@SiO2 nanoparticles in the presence of CTAB surfactant molecules. Powder Technol 2021; 381: 503-508.
| Crossref | Google Scholar |

35  Lin L, Ju T, Han S, Meng F, Li J, Jiang J. Comparison of characteristics and performance between PEI and DETA impregnated on SBA-15 for CO2 capture. Sep Purif Technol 2023; 322: 124346.
| Crossref | Google Scholar |

36  Yue MB, Sun LB, Cao Y, Wang ZJ, Wang Y, Yu Q, Zhu JH. Promoting the CO2 adsorption in the amine-containing SBA-15 by hydroxyl group. Microporous Mesoporous Mater 2008; 114(1): 74-81.
| Crossref | Google Scholar |

37  Wang J, Huang H, Wang M, Yao L, Qiao W, Long D, Ling L. Direct capture of low-concentration CO2 on mesoporous carbon-supported solid amine adsorbents at ambient temperature. Ind Eng Chem Res 2015; 54(19): 5319-5327.
| Crossref | Google Scholar |

38  Gil M, Tiscornia I, de la Iglesia Ó, Mallada R, Santamaría J. Monoamine-grafted MCM-48: an efficient material for CO2 removal at low partial pressures. Chem Eng J 2011; 175: 291-297.
| Crossref | Google Scholar |

39  Cecilia JA, Vilarrasa-García E, García-Sancho C, Saboya RMA, Azevedo DCS, Cavalcante CL, Rodríguez-Castellón E. Functionalization of hollow silica microspheres by impregnation or grafted of amine groups for the CO2 capture. Int J Greenh Gas Control 2016; 52: 344-356.
| Crossref | Google Scholar |

40  Chernikova EA, Glukhov LM, Krasovskiy VG, Kapustin GI, Davshan NA, Mishin IV, Kustov LM. Amine-modified bimodal meso/macroporous silica for CO2 capture. Microporous Mesoporous Mater 2025; 394: 113680.
| Crossref | Google Scholar |

41  Zang P, Tang J, Zhang H, Wang X, Cui L, Chen J, Zhao P, Dong Y. Two-dimensional interfacial enhanced CO2 adsorption performance of porous organic amine solids: structure–activity relationships and DFT calculations. Chem Eng J 2024; 485: 149938.
| Crossref | Google Scholar |

42  Dharmarathna SP, Priyantha N. Investigation of boundary layer effect of intra-particle diffusion on methylene blue adsorption on activated carbon. Energy Nexus 2024; 14: 100294.
| Crossref | Google Scholar |

43  Cavas L, Karabay Z, Alyuruk H, Doğan H, Demir GK. Thomas and artificial neural network models for the fixed-bed adsorption of methylene blue by a beach waste Posidonia oceanica (L.) dead leaves. Chem Eng J 2011; 171(2): 557-562.
| Crossref | Google Scholar |