Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE (Open Access)

Proline hydroxylation and C-terminal amidation in µ-conotoxins increase structural stability and potency at sodium channels

Victoria A. Adegoke A , Yashad Dongol B , Tye Gonzalez A , Angela Song A , Richard J. Clark A , Richard J. Lewis https://orcid.org/0000-0003-3470-923X B , Anne C. Conibear https://orcid.org/0000-0002-5482-6225 A C * and K. Johan Rosengren A *
+ Author Affiliations
- Author Affiliations

A School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Saint Lucia, Qld 4072, Australia.

B Institute for Molecular Bioscience, The University of Queensland, Saint Lucia, Qld 4072, Australia.

C Institute of Applied Synthetic Chemistry, Faculty of Technical Chemistry, TU Wien, Getreidemarkt 9, A-1060 Vienna, Austria.


Handling Editor: Mibel Aguilar

Australian Journal of Chemistry 78, CH25071 https://doi.org/10.1071/CH25071
Submitted: 30 April 2025  Accepted: 22 July 2025  Published online: 2 September 2025

© 2025 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC)

Abstract

Conotoxins are disulfide-rich peptides isolated from the venoms of marine cone snails. These natural products have inspired the development of several drug candidates and novel therapeutic leads. In addition to disulfide bonds, many conotoxins are highly modified with posttranslational modifications (PTMs) such as proline hydroxylation, C-terminal amidation and glycosylation, among others. These modifications can alter the charge, size and hydrophobicity of the conotoxin, influencing its interaction with target receptors and modulating its potency and selectivity. PTMs can also affect the folding kinetics and conformational stability of the peptide, which further affects its biological activity. Although conotoxins undergo a variety of PTMs, the functions of many of these modifications remain unclear. Here, we explored the structural and functional implications of PTMs in two representative conotoxins, PIIIA and TIIIA of the µ-pharmacological family. We synthesised a series of PIIIA and TIIIA peptides bearing native hydroxyproline and C-terminal amidation PTMs, along with their unmodified counterparts. Solid phase peptide synthesis and non-selective disulfide bond formation provided access to pure forms of the eight possible variants for in vitro comparison of their oxidative folding. Structural studies using nuclear magnetic resonance (NMR) spectroscopy, alongside electrophysiological and serum stability assays, were conducted to characterise the functional roles of the PTMs in these conotoxins. Our results suggest that, whereas C-terminal amidation has a crucial role in folding and structural integrity, proline hydroxylation significantly influences the in vitro oxidative folding, stability and biological activity of these conotoxin peptides.

Keywords: C-terminal amidation, µ-conotoxins, nuclear magnetic resonance spectroscopy, oxidative folding, posttranslational modification, proline hydroxylation, sodium channels, solid phase peptide synthesis, structure–function relationship.

References

Norton RS, Olivera BM. Conotoxins down under. Toxicon 2006; 48(7): 780-798.
| Crossref | Google Scholar | PubMed |

Lewis RJ, Dutertre S, Vetter I, Christie MJ. Conus venom peptide pharmacology. Pharmacol Rev 2012; 64(2): 259-298.
| Crossref | Google Scholar | PubMed |

Jin AH, Muttenthaler M, Dutertre S, Himaya SWA, Kaas Q, Craik DJ, Lewis RJ, Alewood PF. Conotoxins: chemistry and biology. Chem Rev 2019; 119(21): 11510-11549.
| Crossref | Google Scholar | PubMed |

Kaas Q, Yu R, Jin AH, Dutertre S, Craik DJ. Conoserver: updated content, knowledge, and discovery tools in the conopeptide database. Nucleic Acids Res 2012; 40: D325-D330.
| Crossref | Google Scholar | PubMed |

Akondi KB, Muttenthaler M, Dutertre S, Kaas Q, Craik DJ, Lewis RJ, Alewood PF. Discovery, synthesis, and structure-activity relationships of conotoxins. Chem Rev 2014; 114(11): 5815-5847.
| Crossref | Google Scholar | PubMed |

Robinson SD, Norton RS. Conotoxin gene superfamilies. Mar Drugs 2014; 12: 6058-6101.
| Crossref | Google Scholar | PubMed |

Norton RS. µ-Conotoxins as leads in the development of new analgesics. Molecules 2010; 15(4): 2825-2844.
| Crossref | Google Scholar | PubMed |

Corpuz GP, Jacobsen RB, Jimenez EC, Watkins M, Walker C, Colledge C, Garrett JE, McDougal O, Li W, Gray WR, et al. Definition of the m-conotoxin superfamily:  characterization of novel peptides from molluscivorous conus venoms. Biochemistry 2005; 44(22): 8176-8186.
| Crossref | Google Scholar | PubMed |

Knapp O, McArthur JR, Adams DJ. Conotoxins targeting neuronal voltage-gated sodium channel subtypes: potential analgesics? Toxins 2012; 4(11): 1236-1260.
| Crossref | Google Scholar | PubMed |

10  Paul George AA, Heimer P, Maaß A, Hamaekers J, Hofmann-Apitius M, Biswas A, Imhof D. Insights into the folding of disulfide-rich µ-conotoxins. ACS Omega 2018; 3(10): 12330-12340.
| Crossref | Google Scholar | PubMed |

11  McMahon KL, Vetter I, Schroeder CI. Voltage-gated sodium channel inhibition by µ-conotoxins. Toxins 2024; 16(1): 55.
| Crossref | Google Scholar | PubMed |

12  Dib-Hajj SD, Black JA, Waxman SG. Voltage-gated sodium channels: therapeutic targets for pain. Pain Med 2009; 10(7): 1260-1269.
| Crossref | Google Scholar | PubMed |

13  Markgraf R, Leipold E, Schirmeyer J, Paolini-Bertrand M, Hartley O, Heinemann SH. Mechanism and molecular basis for the sodium channel subtype specificity of µ-conopeptide CnIIIC. Br J Pharmacol 2012; 167(3): 576-586.
| Crossref | Google Scholar | PubMed |

14  Stevens M, Peigneur S, Dyubankova N, Lescrinier E, Herdewijn P, Tytgat J. Design of bioactive peptides from naturally occurring µ-conotoxin structures. J Biol Chem 2012; 287(37): 31382-31392.
| Crossref | Google Scholar | PubMed |

15  Walsh CT, Garneau-Tsodikova S, Gatto GJ, Jr. Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Int Ed Engl 2005; 44(45): 7342-7372.
| Crossref | Google Scholar | PubMed |

16  Conibear AC. Deciphering protein post-translational modifications using chemical biology tools. Nat Rev Chem 2020; 4(12): 674-695.
| Crossref | Google Scholar | PubMed |

17  Buczek O, Bulaj G, Olivera BM. Conotoxins and the posttranslational modification of secreted gene products. Cell Mol Life Sci 2005; 62(24): 3067-3079.
| Crossref | Google Scholar | PubMed |

18  Lopez-Vera E, Walewska A, Skalicky JJ, Olivera BM, Bulaj G. Role of hydroxyprolines in the in vitro oxidative folding and biological activity of conotoxins. Biochemistry 2008; 47(6): 1741-1751.
| Crossref | Google Scholar | PubMed |

19  Ekberg J, Craik DJ, Adams DJ. Conotoxin modulation of voltage-gated sodium channels. Int J Biochem Cell Biol 2008; 40(11): 2363-2368.
| Crossref | Google Scholar | PubMed |

20  Gorres KL, Raines RT. Prolyl 4-hydroxylase. Crit Rev Biochem Mol Biol 2010; 45(2): 106-124.
| Crossref | Google Scholar | PubMed |

21  Bulaj G, Olivera BM. Folding of conotoxins: Formation of the native disulfide bridges during chemical synthesis and biosynthesis of conus peptides. Antioxid Redox Signal 2008; 10(1): 141-155.
| Crossref | Google Scholar | PubMed |

22  Xu J, Wang Y, Zhang B, Wang B, Du W. Stereochemistry of 4-hydroxyproline affects the conformation of conopeptides. Chem Commun 2010; 46(30): 5467-5469.
| Crossref | Google Scholar | PubMed |

23  Armishaw C, Jensen AA, Balle T, Clark RJ, Harpsøe K, Skonberg C, Liljefors T, Strømgaard K. Rational design of α-conotoxin analogues targeting α7 nicotinic acetylcholine receptors: Improved antagonistic activity by incorporation of proline derivatives. J Biol Chem 2009; 284(14): 9498-9512.
| Crossref | Google Scholar | PubMed |

24  Prigge ST, Mains RE, Eipper BA, Amzel LM. New insights into copper monooxygenases and peptide amidation: Structure, mechanism and function. Cell Mol Life Sci 2000; 57(8–9): 1236-1259.
| Crossref | Google Scholar | PubMed |

25  Wen J, Adams DJ, Hung A. Interactions of the α3β2 nicotinic acetylcholine receptor interfaces with α-conotoxin lsia and its carboxylated c-terminus analogue: molecular dynamics simulations. Mar Drugs 2020; 18(7): 349.
| Crossref | Google Scholar | PubMed |

26  Liu X, Yao G, Wang K, Liu Y, Wan X, Jiang H. Structural and functional characterization of conotoxins from conus achatinus targeting NMDAR. Mar Drugs 2020; 18(3): 135.
| Crossref | Google Scholar | PubMed |

27  Ho TNT, Lee HS, Swaminathan S, Goodwin L, Rai N, Ushay B, Lewis RJ, Rosengren KJ, Conibear AC. Posttranslational modifications of α-conotoxins: sulfotyrosine and C-terminal amidation stabilise structures and increase acetylcholine receptor binding. RSC Med Chem 2021; 12(9): 1574-1584.
| Crossref | Google Scholar | PubMed |

28  Lewis RJ, Schroeder CI, Ekberg J, Nielsen KJ, Loughnan M, Thomas L, Adams DA, Drinkwater R, Adams DJ, Alewood PF. Isolation and structure-activity of µ-conotoxin TIIIA, a potent inhibitor of tetrodotoxin-sensitive voltage-gated sodium channels. Mol Pharmacol 2007; 71(3): 676-685.
| Crossref | Google Scholar | PubMed |

29  Nielsen KJ, Watson M, Adams DJ, Hammarström AK, Gage PW, Hill JM, Craik DJ, Thomas L, Adams D, Alewood PF, et al. Solution structure of µ-conotoxin PIIIA, a preferential inhibitor of persistent tetrodotoxin-sensitive sodium channels. J Biol Chem 2002; 277(30): 27247-27255.
| Crossref | Google Scholar | PubMed |

30  Clark RJ, Fischer H, Dempster L, Daly NL, Rosengren KJ, Nevin ST, Meunier FA, Adams DJ, Craik DJ. Engineering stable peptide toxins by means of backbone cyclization: stabilization of the α-conotoxin MII. Proc Natl Acad Sci USA 2005; 102(39): 13767-13772.
| Crossref | Google Scholar | PubMed |

31  Armishaw CJ, Singh N, Medina-Franco JL, Clark RJ, Scott KC, Houghten RA, Jensen AA. A synthetic combinatorial strategy for developing α-conotoxin analogs as potent α7 nicotinic acetylcholine receptor antagonists. J Biol Chem 2010; 285(3): 1809-1821.
| Crossref | Google Scholar | PubMed |

32  Chan LY, Gunasekera S, Henriques ST, Worth NF, Le SJ, Clark RJ, Campbell JH, Craik DJ, Daly NL. Engineering pro-angiogenic peptides using stable, disulfide-rich cyclic scaffolds. Blood 2011; 118(25): 6709-6717.
| Crossref | Google Scholar | PubMed |

33  Wilson MJ, Yoshikami D, Azam L, Gajewiak J, Olivera BM, Bulaj G, Zhang MM. µ-Conotoxins that differentially block sodium channels nav1.1 through 1.8 identify those responsible for action potentials in sciatic nerve. Proc Natl Acad Sci USA 2011; 108(25): 10302-10307.
| Crossref | Google Scholar | PubMed |

34  Khoo KK, Gupta K, Green BR, Zhang MM, Watkins M, Olivera BM, Balaram P, Yoshikami D, Bulaj G, Norton RS. Distinct disulfide isomers of µ-conotoxins KIIIA and KIIIB block voltage-gated sodium channels. Biochemistry 2012; 51(49): 9826-9835.
| Crossref | Google Scholar | PubMed |

35  Smallwood TB, Krumpe LRH, Payne CD, Klein VG, O’Keefe BR, Clark RJ, Schroeder CI, Rosengren KJ. Picking the tyrosine-lock: chemical synthesis of the tyrosyl-DNA phosphodiesterase i inhibitor recifin a and analogues. Chem Sci 2024; 15(33): 13227-13233.
| Crossref | Google Scholar | PubMed |

36  Shon KJ, Olivera BM, Watkins M, Jacobsen RB, Gray WR, Floresca CZ, Cruz LJ, Hillyard DR, Brink A, Terlau H, et al. µ-Conotoxin PIIIA, a new peptide for discriminating among tetrodotoxin-sensitive Na channel subtypes. J Neurosci 1998; 18(12): 4473-4481.
| Crossref | Google Scholar | PubMed |

37  Bax A, Davis DG. Mlev-17-based two-dimensional homonuclear magnetization transfer spectroscopy. J Magn Reson 1985; 65(2): 355-360.
| Crossref | Google Scholar |

38  Kumar A, Ernst RR, Wüthrich K. A two-dimensional nuclear overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. Biochem Biophys Res Commun 1980; 95(1): 1-6.
| Crossref | Google Scholar | PubMed |

39  Jeener J, Meier BH, Bachmann P, Ernst RR. Investigation of exchange processes by two-dimensional NMR spectroscopy. J Chem Phys 1979; 71(11): 4546-4553.
| Crossref | Google Scholar |

40  Vuister GW, Bax A. Resolution enhancement and spectral editing of uniformly 13C-enriched proteins by homonuclear broadband 13C decoupling. J Magn Reson 1992; 98(2): 428-435.
| Crossref | Google Scholar |

41  Palmer AG, Cavanagh J, Wright PE, Rance M. Sensitivity improvement in proton-detected two-dimensional heteronuclear correlation NMR spectroscopy. J Magn Reson 1991; 93(1): 151-170.
| Crossref | Google Scholar |

42  Wüthrich K. NMR of proteins and nucleic acids. Wiley; 1986.

43  Wishart DS, Bigam CG, Holm A, Hodges RS, Sykes BD. 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR 1995; 5(1): 67-81.
| Crossref | Google Scholar | PubMed |

44  Conibear AC, Rosengren KJ, Becker CFW, Kaehlig H. Random coil shifts of posttranslationally modified amino acids. J Biomol NMR 2019; 73(10–11): 587-599.
| Crossref | Google Scholar | PubMed |

45  Cierpicki T, Otlewski J. Amide proton temperature coefficients as hydrogen bond indicators in proteins. J Biomol NMR 2001; 21(3): 249-261.
| Crossref | Google Scholar | PubMed |

46  Schroeder CI, Rosengren KJ. Three-dimensional structure determination of peptides using solution nuclear magnetic resonance spectroscopy. Methods Mol Biol 2020; 2068: 129-162.
| Crossref | Google Scholar | PubMed |

47  Williams CJ, Headd JJ, Moriarty NW, Prisant MG, Videau LL, Deis LN, Verma V, Keedy DA, Hintze BJ, Chen VB, Jain S, Lewis SM, Arendall WB, III, Snoeyink J, Adams PD, Lovell SC, Richardson JS, Richardson DC. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci 2018; 27(1): 293-315.
| Crossref | Google Scholar |

48  Dudley SC, Jr, Todt H, Lipkind G, Fozzard HA. A µ-conotoxin-insensitive Na+ channel mutant: possible localization of a binding site at the outer vestibule. Biophys J 1995; 69(5): 1657-1665.
| Crossref | Google Scholar | PubMed |

49  Chang NS, French RJ, Lipkind GM, Fozzard HA, Dudley S, Jr. Predominant interactions between µ-conotoxin arg-13 and the skeletal muscle Na+ channel localized by mutant cycle analysis. Biochemistry 1998; 37(13): 4407-4419.
| Crossref | Google Scholar | PubMed |

50  Pallaghy PK, Norton RS. Refined solution structure of ω-conotoxin GVIA: implications for calcium channel binding. J Pept Res 1999; 53(3): 343-351.
| Crossref | Google Scholar | PubMed |

51  Zhang Z, Marshall AG. A universal algorithm for fast and automated charge state deconvolution of electrospray mass-to-charge ratio spectra. J Am Soc Mass Spectrom 1998; 9(3): 225-233.
| Crossref | Google Scholar |

52  Keller R. The computer aided resonance assignment tutorial. Goldau, Switzerland: CANTINA Verlag; 2004.

53  Wüthrich K, Wider G, Wagner G, Braun W. Sequential resonance assignments as a basis for determination of spatial protein structures by high resolution proton nuclear magnetic resonance. J Mol Biol 1982; 155(3): 311-319.
| Crossref | Google Scholar | PubMed |

54  Güntert P. Automated NMR structure calculation with CYANA. Methods Mol Biol 2004; 278: 353-378.
| Crossref | Google Scholar | PubMed |

55  Armstrong DA, Kaas Q, Rosengren KJ. Prediction of disulfide dihedral angles using chemical shifts. Chem Sci 2018; 9(31): 6548-6556.
| Crossref | Google Scholar | PubMed |

56  Shen Y, Bax A. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J Biomol NMR 2013; 56(3): 227-241.
| Crossref | Google Scholar | PubMed |

57  Brünger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr – D. Biol Crystallogr 1998; 54(Pt 5): 905-921.
| Crossref | Google Scholar | PubMed |

58  Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WB, Snoeyink J, Richardson JS, Richardson DC. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 2007; 35: W375-W383.
| Crossref | Google Scholar | PubMed |

59  Chen VB, Arendall WB, III, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr – D. Biol Crystallogr 2010; 66(Pt 1): 12-21.
| Crossref | Google Scholar | PubMed |

60  Koradi R, Billeter M, Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 1996; 14(1): 51-55.
| Crossref | Google Scholar | PubMed |